Stochastic Processes and their Applications最新文献

筛选
英文 中文
On a class of exponential changes of measure for stochastic PDEs 一类随机偏微分方程测度的指数变化
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-03-15 DOI: 10.1016/j.spa.2025.104630
Thorben Pieper-Sethmacher , Frank van der Meulen , Aad van der Vaart
{"title":"On a class of exponential changes of measure for stochastic PDEs","authors":"Thorben Pieper-Sethmacher ,&nbsp;Frank van der Meulen ,&nbsp;Aad van der Vaart","doi":"10.1016/j.spa.2025.104630","DOIUrl":"10.1016/j.spa.2025.104630","url":null,"abstract":"<div><div>Given a mild solution <span><math><mi>X</mi></math></span> to a semilinear stochastic partial differential equation (SPDE), we consider an exponential change of measure based on its infinitesimal generator <span><math><mi>L</mi></math></span>, defined in the topology of bounded pointwise convergence. The changed measure <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span> depends on the choice of a function <span><math><mi>h</mi></math></span> in the domain of <span><math><mi>L</mi></math></span>. In our main result, we derive conditions on <span><math><mi>h</mi></math></span> for which the change of measure is of Girsanov-type. The process <span><math><mi>X</mi></math></span> under <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span> is then shown to be a mild solution to another SPDE with an extra additive drift-term. We illustrate how different choices of <span><math><mi>h</mi></math></span> impact the law of <span><math><mi>X</mi></math></span> under <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span> in selected applications. These include the derivation of an infinite-dimensional diffusion bridge as well as the introduction of guided processes for SPDEs, generalizing results known for finite-dimensional diffusion processes to the infinite-dimensional case.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104630"},"PeriodicalIF":1.1,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expected hitting time estimates on finite graphs 对有限图的预期命中时间估计
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-03-11 DOI: 10.1016/j.spa.2025.104626
Laurent Saloff-Coste , Yuwen Wang
{"title":"Expected hitting time estimates on finite graphs","authors":"Laurent Saloff-Coste ,&nbsp;Yuwen Wang","doi":"10.1016/j.spa.2025.104626","DOIUrl":"10.1016/j.spa.2025.104626","url":null,"abstract":"<div><div>The expected hitting time from vertex <span><math><mi>a</mi></math></span> to vertex <span><math><mi>b</mi></math></span>, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span>, is the expected value of the time it takes a random walk starting at <span><math><mi>a</mi></math></span> to reach <span><math><mi>b</mi></math></span>. In this paper, we give estimates for <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> when the distance between <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span> is comparable to the diameter of the graph, and the graph satisfies a Harnack condition. We show that, in such cases, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> can be estimated in terms of the volumes of balls around <span><math><mi>b</mi></math></span>. Using our results, we estimate <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> on various graphs, such as rectangular tori, some convex traces in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, and fractal graphs. Our proofs use heat kernel estimates.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104626"},"PeriodicalIF":1.1,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143609989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preventing finite-time blowup in a constrained potential for reaction–diffusion equations 防止反应扩散方程的有限时间爆炸
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-03-10 DOI: 10.1016/j.spa.2025.104627
John Ivanhoe, Michael Salins
{"title":"Preventing finite-time blowup in a constrained potential for reaction–diffusion equations","authors":"John Ivanhoe,&nbsp;Michael Salins","doi":"10.1016/j.spa.2025.104627","DOIUrl":"10.1016/j.spa.2025.104627","url":null,"abstract":"<div><div>We examine stochastic reaction–diffusion equations of the form <span><math><mrow><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mi>A</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> on a bounded spatial domain <span><math><mrow><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, where <span><math><mi>f</mi></math></span> models a constrained, dissipative force that keeps solutions between <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span> and 1. To model this, we assume that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are unbounded as <span><math><mi>u</mi></math></span> approaches <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span>. We identify sufficient conditions on the growth rates of <span><math><mi>f</mi></math></span> and <span><math><mi>σ</mi></math></span> that guarantee solutions to not escape this bounded set.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104627"},"PeriodicalIF":1.1,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143609990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On strong solutions of time inhomogeneous Itô’s equations with Morrey diffusion gradient and drift. A supercritical case 具有Morrey扩散梯度和漂移的时间非齐次Itô方程的强解。超临界情况
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-03-04 DOI: 10.1016/j.spa.2025.104619
N.V. Krylov
{"title":"On strong solutions of time inhomogeneous Itô’s equations with Morrey diffusion gradient and drift. A supercritical case","authors":"N.V. Krylov","doi":"10.1016/j.spa.2025.104619","DOIUrl":"10.1016/j.spa.2025.104619","url":null,"abstract":"<div><div>We prove the existence of strong solutions of Itô’s stochastic time dependent equations with irregular diffusion and drift terms of Morrey spaces. Strong uniqueness is also discussed. The results are new even if there is no drift.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104619"},"PeriodicalIF":1.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Averaging principle for slow–fast systems of stochastic PDEs with rough coefficients 粗糙系数随机偏微分方程慢-快系统的平均原理
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-03-04 DOI: 10.1016/j.spa.2025.104618
Sandra Cerrai , Yichun Zhu
{"title":"Averaging principle for slow–fast systems of stochastic PDEs with rough coefficients","authors":"Sandra Cerrai ,&nbsp;Yichun Zhu","doi":"10.1016/j.spa.2025.104618","DOIUrl":"10.1016/j.spa.2025.104618","url":null,"abstract":"<div><div>This paper examines a class of slow–fast systems of stochastic partial differential equations in which the nonlinearity in the slow equation is unbounded and discontinuous. We establish conditions that guarantee the existence of a martingale solution, and we demonstrate that the laws of the slow motions are tight, with any of their limiting points serving as a martingale solution for an appropriate averaged equation. Our findings have particular relevance for systems of stochastic reaction–diffusion equations, where the reaction term in the slow equation is only continuous and has arbitrary polynomial growth.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104618"},"PeriodicalIF":1.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluctuations of Omega-killed level-dependent spectrally negative Lévy processes 欧米茄灭活的依赖于能级的负光谱lsamvy过程的波动
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-03-03 DOI: 10.1016/j.spa.2025.104617
Zbigniew Palmowski , Meral Şimşek , Apostolos D. Papaioannou
{"title":"Fluctuations of Omega-killed level-dependent spectrally negative Lévy processes","authors":"Zbigniew Palmowski ,&nbsp;Meral Şimşek ,&nbsp;Apostolos D. Papaioannou","doi":"10.1016/j.spa.2025.104617","DOIUrl":"10.1016/j.spa.2025.104617","url":null,"abstract":"<div><div>In this paper, we solve exit problems for a level-dependent Lévy process which is exponentially killed with a killing intensity that depends on the present state of the process. Moreover, we analyse the respective resolvents. All identities are given in terms of new generalisations of scale functions (counterparts of the scale function from the theory of Lévy processes), which are solutions of Volterra integral equations. Furthermore, we obtain similar results for the reflected level-dependent Lévy processes. The existence of the solution of the stochastic differential equation for reflected level-dependent Lévy processes is also discussed. Finally, to illustrate our result, the probability of bankruptcy is obtained for an insurance risk process.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104617"},"PeriodicalIF":1.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intersections of Poisson k-flats in hyperbolic space: Completing the picture 双曲空间中泊松k平面的交点:补图
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-02-28 DOI: 10.1016/j.spa.2025.104613
Tillmann Bühler, Daniel Hug
{"title":"Intersections of Poisson k-flats in hyperbolic space: Completing the picture","authors":"Tillmann Bühler,&nbsp;Daniel Hug","doi":"10.1016/j.spa.2025.104613","DOIUrl":"10.1016/j.spa.2025.104613","url":null,"abstract":"<div><div>Let <span><math><mi>η</mi></math></span> be an isometry invariant Poisson process of <span><math><mi>k</mi></math></span>-flats, <span><math><mrow><mn>0</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>d</mi><mo>−</mo><mn>1</mn></mrow></math></span>, in <span><math><mi>d</mi></math></span>-dimensional hyperbolic space. For <span><math><mrow><mi>d</mi><mo>−</mo><mi>m</mi><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>k</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span>, the <span><math><mi>m</mi></math></span>-th order intersection process of <span><math><mi>η</mi></math></span> consists of all nonempty intersections of distinct flats <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∈</mo><mi>η</mi></mrow></math></span>. Of particular interest is the total volume <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msubsup></math></span> of this intersection process in a ball of radius <span><math><mi>r</mi></math></span>. For <span><math><mrow><mn>2</mn><mi>k</mi><mo>&gt;</mo><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span>, we determine the asymptotic distribution of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msubsup></math></span>, as <span><math><mrow><mi>r</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, previously known only for <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math></span>, and derive rates of convergence in the Kolmogorov distance. Properties of the non-Gaussian limit distribution are discussed. We further study the asymptotic covariance matrix of the vector <span><math><msup><mrow><mrow><mo>(</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mo>⊤</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"185 ","pages":"Article 104613"},"PeriodicalIF":1.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of subcritical Galton Watson processes with correlated immigration 具有相关迁移的次临界高尔顿-沃森过程的估计
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-02-27 DOI: 10.1016/j.spa.2025.104614
Yacouba Boubacar Maïnassara , Landy Rabehasaina
{"title":"Estimation of subcritical Galton Watson processes with correlated immigration","authors":"Yacouba Boubacar Maïnassara ,&nbsp;Landy Rabehasaina","doi":"10.1016/j.spa.2025.104614","DOIUrl":"10.1016/j.spa.2025.104614","url":null,"abstract":"<div><div>We consider an observed subcritical Galton Watson process <span><math><mrow><mo>{</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span> with correlated stationary immigration process <span><math><mrow><mo>{</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span>. Two situations are presented. The first one is when <span><math><mrow><mtext>Cov</mtext><mrow><mo>(</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> for <span><math><mi>k</mi></math></span> larger than some <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>: a consistent estimator for the reproduction and mean immigration rates is given, and a central limit theorem is proved. The second one is when <span><math><mrow><mo>{</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span> has general correlation structure: under mixing assumptions, we exhibit an estimator for the logarithm of the reproduction rate and we prove that it converges in quadratic mean with explicit speed. In addition, when the mixing coefficients decrease fast enough, we provide and prove a two terms expansion for the estimator. Numerical illustrations are provided.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"184 ","pages":"Article 104614"},"PeriodicalIF":1.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143526695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and uniqueness of SPDEs driven by nonlinear multiplicative mixed noise 非线性乘性混合噪声驱动下spde的存在唯一性
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-02-25 DOI: 10.1016/j.spa.2025.104612
Shiduo Qu, Hongjun Gao
{"title":"Existence and uniqueness of SPDEs driven by nonlinear multiplicative mixed noise","authors":"Shiduo Qu,&nbsp;Hongjun Gao","doi":"10.1016/j.spa.2025.104612","DOIUrl":"10.1016/j.spa.2025.104612","url":null,"abstract":"<div><div>This paper investigates a class of stochastic partial differential equations (SPDEs) driven by standard Brownian motion and fractional Brownian motion with Hurst parameter <span><math><mrow><mi>H</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>. We establish the existence and uniqueness of solutions for these SPDEs in sense of almost surely. We further prove that the moments of the solutions are finite. Moreover, we explore the equivalence between the integral defined by fractional derivatives and that defined by sewing lemma.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"184 ","pages":"Article 104612"},"PeriodicalIF":1.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional independence in stationary distributions of diffusions 扩散静态分布中的条件独立性
IF 1.1 2区 数学
Stochastic Processes and their Applications Pub Date : 2025-02-21 DOI: 10.1016/j.spa.2025.104604
Tobias Boege , Mathias Drton , Benjamin Hollering , Sarah Lumpp , Pratik Misra , Daniela Schkoda
{"title":"Conditional independence in stationary distributions of diffusions","authors":"Tobias Boege ,&nbsp;Mathias Drton ,&nbsp;Benjamin Hollering ,&nbsp;Sarah Lumpp ,&nbsp;Pratik Misra ,&nbsp;Daniela Schkoda","doi":"10.1016/j.spa.2025.104604","DOIUrl":"10.1016/j.spa.2025.104604","url":null,"abstract":"<div><div>Stationary distributions of multivariate diffusion processes have recently been proposed as probabilistic models of causal systems in statistics and machine learning. Motivated by these developments, we study stationary multivariate diffusion processes with a sparsely structured drift. Our main result gives a characterization of the conditional independence relations that hold in a stationary distribution. The result draws on a graphical representation of the drift structure and pertains to conditional independence relations that hold generally as a consequence of the drift’s sparsity pattern.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"184 ","pages":"Article 104604"},"PeriodicalIF":1.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143518982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信