Percolation with random one-dimensional reinforcements

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
A. Nascimento , R. Sanchis , D. Ungaretti
{"title":"Percolation with random one-dimensional reinforcements","authors":"A. Nascimento ,&nbsp;R. Sanchis ,&nbsp;D. Ungaretti","doi":"10.1016/j.spa.2025.104704","DOIUrl":null,"url":null,"abstract":"<div><div>We study inhomogeneous Bernoulli bond percolation on the graph <span><math><mrow><mi>G</mi><mo>×</mo><mi>Z</mi></mrow></math></span>, where <span><math><mi>G</mi></math></span> is a connected quasi-transitive graph. The inhomogeneity is introduced through a random region <span><math><mi>R</mi></math></span> around the <em>origin axis</em> <span><math><mrow><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>×</mo><mi>Z</mi></mrow></math></span>, where each edge in <span><math><mi>R</mi></math></span> is open with probability <span><math><mi>q</mi></math></span> and all other edges are open with probability <span><math><mi>p</mi></math></span>. When the region <span><math><mi>R</mi></math></span> is defined by stacking or overlapping boxes with random radii centered along the origin axis, we derive conditions on the moments of the radii, based on the growth properties of <span><math><mi>G</mi></math></span>, so that for any subcritical <span><math><mi>p</mi></math></span> and any <span><math><mrow><mi>q</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the non-percolative phase persists.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104704"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001450","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study inhomogeneous Bernoulli bond percolation on the graph G×Z, where G is a connected quasi-transitive graph. The inhomogeneity is introduced through a random region R around the origin axis {0}×Z, where each edge in R is open with probability q and all other edges are open with probability p. When the region R is defined by stacking or overlapping boxes with random radii centered along the origin axis, we derive conditions on the moments of the radii, based on the growth properties of G, so that for any subcritical p and any q<1, the non-percolative phase persists.
随机一维强化的渗透
研究了图G×Z上的非齐次伯努利键渗透,其中G是连通拟传递图。不均匀性是通过引入一个随机区域R绕原点轴{0}×Z,其中每个边缘与概率q和R是开放所有其他边缘概率p开放。当定义的区域R是叠加或重叠的盒子用随机半径沿着起源轴为中心,半径的时刻我们获得条件,基于G的生长特性,这对于任何亚临界p和任何q< 1, non-percolative阶段仍然存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信