Convergence rates for Chernoff-type approximations of convex monotone semigroups

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Jonas Blessing , Lianzi Jiang , Michael Kupper , Gechun Liang
{"title":"Convergence rates for Chernoff-type approximations of convex monotone semigroups","authors":"Jonas Blessing ,&nbsp;Lianzi Jiang ,&nbsp;Michael Kupper ,&nbsp;Gechun Liang","doi":"10.1016/j.spa.2025.104700","DOIUrl":null,"url":null,"abstract":"<div><div>We provide explicit convergence rates for Chernoff-type approximations of convex monotone semigroups which have the form <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>f</mi><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><mi>I</mi><msup><mrow><mrow><mo>(</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mi>f</mi></mrow></math></span> for bounded continuous functions <span><math><mi>f</mi></math></span>. Under suitable conditions on the one-step operators <span><math><mrow><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> regarding the time regularity and consistency of the approximation scheme, we obtain <span><math><mrow><msub><mrow><mo>‖</mo><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>f</mi><mo>−</mo><mi>I</mi><msup><mrow><mrow><mo>(</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup><mi>f</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><mo>≤</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup></mrow></math></span> for bounded Lipschitz continuous functions <span><math><mi>f</mi></math></span>, where <span><math><mrow><mi>c</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> are determined explicitly. Moreover, the mapping <span><math><mrow><mi>t</mi><mo>↦</mo><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>f</mi></mrow></math></span> is Hölder continuous. These results are closely related to monotone approximation schemes for viscosity solutions but are obtained independently by following a recently developed semigroup approach to Hamilton–Jacobi–Bellman equations which uniquely characterizes semigroups via their <span><math><mi>Γ</mi></math></span>-generators. The different approach allows to consider convex rather than sublinear equations and the results can be extended to unbounded functions by modifying the norm with a suitable weight function. Furthermore, up to possibly different consistency errors for the operators <span><math><mrow><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, the upper and lower bound for the error between the semigroup and the iterated operators are symmetric. The abstract results are applied to Nisio semigroups and limit theorems for convex expectations.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104700"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001413","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We provide explicit convergence rates for Chernoff-type approximations of convex monotone semigroups which have the form S(t)f=limnI(tn)nf for bounded continuous functions f. Under suitable conditions on the one-step operators I(t) regarding the time regularity and consistency of the approximation scheme, we obtain S(t)fI(tn)nfcnγ for bounded Lipschitz continuous functions f, where c0 and γ>0 are determined explicitly. Moreover, the mapping tS(t)f is Hölder continuous. These results are closely related to monotone approximation schemes for viscosity solutions but are obtained independently by following a recently developed semigroup approach to Hamilton–Jacobi–Bellman equations which uniquely characterizes semigroups via their Γ-generators. The different approach allows to consider convex rather than sublinear equations and the results can be extended to unbounded functions by modifying the norm with a suitable weight function. Furthermore, up to possibly different consistency errors for the operators I(t), the upper and lower bound for the error between the semigroup and the iterated operators are symmetric. The abstract results are applied to Nisio semigroups and limit theorems for convex expectations.
凸单调半群的chernoff型逼近的收敛率
对于有界连续函数f,我们给出了形式为S(t)f=limn→∞I(tn)nf的凸单调半群的chernoff型近似的显式收敛速率。在关于近似格式的时间正则性和一致性的一步算子I(t)的适当条件下,我们得到了有界Lipschitz连续函数f的‖S(t)f−I(tn)nf‖∞≤cn−γ,其中c≥0和γ>;0是显式确定的。而且,映射t∈S(t)f是Hölder连续的。这些结果与粘度解的单调近似方案密切相关,但是通过遵循最近开发的Hamilton-Jacobi-Bellman方程的半群方法独立获得的,该方法通过Γ-generators独特地表征了半群。不同的方法允许考虑凸方程而不是次线性方程,并且可以通过用合适的权函数修改范数将结果扩展到无界函数。此外,除了运算符I(t)可能存在不同的一致性误差外,半群与迭代运算符之间的误差上界和下界是对称的。将抽象结果应用于Nisio半群和凸期望的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信