Gideon Amir , Markus Heydenreich , Christian Hirsch
{"title":"平面强化k-out渗流","authors":"Gideon Amir , Markus Heydenreich , Christian Hirsch","doi":"10.1016/j.spa.2025.104706","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the percolation properties of a planar reinforced network model. In this model, at every time step, every vertex chooses <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>1</mn></mrow></math></span> incident edges, whose weight is then increased by 1. The choice of this <span><math><mi>k</mi></math></span>-tuple occurs proportionally to the product of the corresponding edge weights raised to some power <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span>.</div><div>Our investigations are guided by the conjecture that the set of infinitely reinforced edges percolates for <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>≫</mo><mn>1</mn></mrow></math></span>. First, we study the case <span><math><mrow><mi>α</mi><mo>=</mo><mi>∞</mi></mrow></math></span>, where we show the percolation for <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> after adding arbitrarily sparse independent sprinkling and also allowing dual connectivities. We also derive a finite-size criterion for percolation without sprinkling. Then, we extend this finite-size criterion to the <span><math><mrow><mi>α</mi><mo><</mo><mi>∞</mi></mrow></math></span> case. Finally, we verify these conditions numerically.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104706"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planar reinforced k-out percolation\",\"authors\":\"Gideon Amir , Markus Heydenreich , Christian Hirsch\",\"doi\":\"10.1016/j.spa.2025.104706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the percolation properties of a planar reinforced network model. In this model, at every time step, every vertex chooses <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>1</mn></mrow></math></span> incident edges, whose weight is then increased by 1. The choice of this <span><math><mi>k</mi></math></span>-tuple occurs proportionally to the product of the corresponding edge weights raised to some power <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span>.</div><div>Our investigations are guided by the conjecture that the set of infinitely reinforced edges percolates for <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>≫</mo><mn>1</mn></mrow></math></span>. First, we study the case <span><math><mrow><mi>α</mi><mo>=</mo><mi>∞</mi></mrow></math></span>, where we show the percolation for <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> after adding arbitrarily sparse independent sprinkling and also allowing dual connectivities. We also derive a finite-size criterion for percolation without sprinkling. Then, we extend this finite-size criterion to the <span><math><mrow><mi>α</mi><mo><</mo><mi>∞</mi></mrow></math></span> case. Finally, we verify these conditions numerically.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"189 \",\"pages\":\"Article 104706\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001474\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001474","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We investigate the percolation properties of a planar reinforced network model. In this model, at every time step, every vertex chooses incident edges, whose weight is then increased by 1. The choice of this -tuple occurs proportionally to the product of the corresponding edge weights raised to some power .
Our investigations are guided by the conjecture that the set of infinitely reinforced edges percolates for and . First, we study the case , where we show the percolation for after adding arbitrarily sparse independent sprinkling and also allowing dual connectivities. We also derive a finite-size criterion for percolation without sprinkling. Then, we extend this finite-size criterion to the case. Finally, we verify these conditions numerically.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.