Julio Backhoff-Veraguas , Sigrid Källblad , Benjamin A. Robinson
{"title":"改编了Wasserstein距离SDEs定律","authors":"Julio Backhoff-Veraguas , Sigrid Källblad , Benjamin A. Robinson","doi":"10.1016/j.spa.2025.104689","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the bicausal optimal transport problem between the laws of scalar time-homogeneous stochastic differential equations, and we establish the optimality of the synchronous coupling between these laws. The proof of this result is based on time-discretisation and reveals a novel connection between the synchronous coupling and the celebrated discrete-time Knothe–Rosenblatt rearrangement. We also prove a result on equality of topologies restricted to a certain subset of laws of continuous-time processes. We complement our main results with examples showing how the optimal coupling may change in path-dependent and multidimensional settings.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104689"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapted Wasserstein distance between the laws of SDEs\",\"authors\":\"Julio Backhoff-Veraguas , Sigrid Källblad , Benjamin A. Robinson\",\"doi\":\"10.1016/j.spa.2025.104689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the bicausal optimal transport problem between the laws of scalar time-homogeneous stochastic differential equations, and we establish the optimality of the synchronous coupling between these laws. The proof of this result is based on time-discretisation and reveals a novel connection between the synchronous coupling and the celebrated discrete-time Knothe–Rosenblatt rearrangement. We also prove a result on equality of topologies restricted to a certain subset of laws of continuous-time processes. We complement our main results with examples showing how the optimal coupling may change in path-dependent and multidimensional settings.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"189 \",\"pages\":\"Article 104689\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001309\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001309","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Adapted Wasserstein distance between the laws of SDEs
We consider the bicausal optimal transport problem between the laws of scalar time-homogeneous stochastic differential equations, and we establish the optimality of the synchronous coupling between these laws. The proof of this result is based on time-discretisation and reveals a novel connection between the synchronous coupling and the celebrated discrete-time Knothe–Rosenblatt rearrangement. We also prove a result on equality of topologies restricted to a certain subset of laws of continuous-time processes. We complement our main results with examples showing how the optimal coupling may change in path-dependent and multidimensional settings.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.