谱正lsamvy过程的多项式泛函矩

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Peter Glynn , Royi Jacobovic , Michel Mandjes
{"title":"谱正lsamvy过程的多项式泛函矩","authors":"Peter Glynn ,&nbsp;Royi Jacobovic ,&nbsp;Michel Mandjes","doi":"10.1016/j.spa.2025.104726","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> be a compound Poisson process with rate <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and a jumps distribution <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> concentrated on <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>. In addition, let <span><math><mi>V</mi></math></span> be a random variable which is distributed according to <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and independent from <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>. Define a new process <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>V</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><mi>V</mi><mo>+</mo><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>t</mi></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></math></span> and let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> be the first time that <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> hits the origin. A long-standing open problem due to Iglehart (1971) and Cohen (1979) is to derive the moments of the functional <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>τ</mi></mrow></msubsup><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> in terms of the moments of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>λ</mi></math></span>. In the current work, we solve this problem in much greater generality, i.e., first by letting <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> belong to a wide class of spectrally positive Lévy processes and secondly, by considering more general class of functionals. We also supply several applications of the existing results, e.g., in studying the process <span><math><mrow><mi>x</mi><mo>↦</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></msubsup><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> defined on <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104726"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moments of polynomial functionals of spectrally positive Lévy processes\",\"authors\":\"Peter Glynn ,&nbsp;Royi Jacobovic ,&nbsp;Michel Mandjes\",\"doi\":\"10.1016/j.spa.2025.104726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> be a compound Poisson process with rate <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and a jumps distribution <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> concentrated on <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>. In addition, let <span><math><mi>V</mi></math></span> be a random variable which is distributed according to <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and independent from <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>. Define a new process <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>V</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≡</mo><mi>V</mi><mo>+</mo><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mi>t</mi></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></math></span> and let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> be the first time that <span><math><mrow><mi>W</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> hits the origin. A long-standing open problem due to Iglehart (1971) and Cohen (1979) is to derive the moments of the functional <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>τ</mi></mrow></msubsup><mi>W</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> in terms of the moments of <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>λ</mi></math></span>. In the current work, we solve this problem in much greater generality, i.e., first by letting <span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span> belong to a wide class of spectrally positive Lévy processes and secondly, by considering more general class of functionals. We also supply several applications of the existing results, e.g., in studying the process <span><math><mrow><mi>x</mi><mo>↦</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></msubsup><msub><mrow><mi>W</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>t</mi></mrow></math></span> defined on <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"190 \",\"pages\":\"Article 104726\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441492500167X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492500167X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

设J(⋅)为一个速率为λ>;0的复合泊松过程,其跳变分布G(⋅)集中于(0,∞)。另外,设V为随机变量,按G(⋅)分布,独立于J(⋅)。定义一个新的过程W(t)≡WV(t)≡V+J(t)−t, t小于0,并设τV为W(⋅)第一次到达原点。由Iglehart(1971)和Cohen(1979)提出的一个长期存在的开放问题是用G(⋅)和λ的矩来推导泛函∫0τW(t)dt的矩。在目前的工作中,我们以更普遍的方式解决了这个问题,即,首先通过让J(⋅)属于一个广泛的谱正l过程类,其次,通过考虑更一般的泛函类。我们还提供了现有结果的几个应用,例如在研究x∈[0,∞]上定义的过程x∈∫0τxWx(t)dt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moments of polynomial functionals of spectrally positive Lévy processes
Let J() be a compound Poisson process with rate λ>0 and a jumps distribution G() concentrated on (0,). In addition, let V be a random variable which is distributed according to G() and independent from J(). Define a new process W(t)WV(t)V+J(t)t, t0 and let τV be the first time that W() hits the origin. A long-standing open problem due to Iglehart (1971) and Cohen (1979) is to derive the moments of the functional 0τW(t)dt in terms of the moments of G() and λ. In the current work, we solve this problem in much greater generality, i.e., first by letting J() belong to a wide class of spectrally positive Lévy processes and secondly, by considering more general class of functionals. We also supply several applications of the existing results, e.g., in studying the process x0τxWx(t)dt defined on x[0,).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信