{"title":"New continuity results for a class of time fractional stochastic heat equations in bounded and unbounded domains","authors":"Nguyen Huy Tuan , Erkan Nane","doi":"10.1016/j.spa.2025.104687","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a class of time fractional stochastic heat type equation <span><span><span><math><mrow><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msubsup><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>=</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>+</mo><msubsup><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></msubsup><mrow><mo>[</mo><mi>λ</mi><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>)</mo></mrow><mo>]</mo></mrow></mrow></math></span></span></span>where <span><math><mrow><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>,</mo><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></math></span> is the Caputo fractional derivative, <span><math><mrow><mi>σ</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow></math></span> is a Lipschitz continuous function, and <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover></math></span> is space–time white noise. These equations have significant applications in modeling temperature in thermal materials. Our main purpose in this paper is to study the continuity of solutions of fractional order Equation (1) with respect to <span><math><mi>α</mi></math></span>. Two interesting questions for our problem are stated as follows. Let <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> and <span><math><mi>u</mi></math></span> be the solution of Equation (1) for <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>, respectively. The first question is that : Does <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>→</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub></mrow></math></span> in an appropriate sense as <span><math><mrow><mi>α</mi><mo>→</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span>? The second question is that: Does <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>→</mo><mi>u</mi></mrow></math></span> in an appropriate sense as <span><math><mrow><mi>α</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>? We will give affirmative answers to both of these questions. Furthermore, under some suitable assumptions on the initial datum, we provide the convergence rate estimates between <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span>, as well as <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> and <span><math><mi>u</mi></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104687"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001280","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a class of time fractional stochastic heat type equation where is the Caputo fractional derivative, is a Lipschitz continuous function, and is space–time white noise. These equations have significant applications in modeling temperature in thermal materials. Our main purpose in this paper is to study the continuity of solutions of fractional order Equation (1) with respect to . Two interesting questions for our problem are stated as follows. Let and be the solution of Equation (1) for and , respectively. The first question is that : Does in an appropriate sense as ? The second question is that: Does in an appropriate sense as ? We will give affirmative answers to both of these questions. Furthermore, under some suitable assumptions on the initial datum, we provide the convergence rate estimates between and , as well as and .
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.