Γ-expansion of the measure-current large deviations rate functional of non-reversible finite-state Markov chains

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
S. Kim , C. Landim
{"title":"Γ-expansion of the measure-current large deviations rate functional of non-reversible finite-state Markov chains","authors":"S. Kim ,&nbsp;C. Landim","doi":"10.1016/j.spa.2025.104733","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a sequence of continuous-time Markov chains <span><math><mrow><mo>(</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup><mo>:</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>)</mo></mrow></math></span> evolving on a fixed finite state space <span><math><mi>V</mi></math></span>. Let <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the measure-current large deviations rate functional for <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup></math></span>, as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. Under a hypothesis on the jump rates, we prove that <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> can be written as <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msup><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></msup><mspace></mspace><mo>+</mo><mspace></mspace><msub><mrow><mo>∑</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mspace></mspace><msup><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msup></mrow></math></span> for some rate functionals <span><math><msup><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msup></math></span>. The weights <span><math><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msubsup></math></span> correspond to the time-scales at which the sequence of Markov chains <span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup></math></span> evolves among the metastable wells, and the rate functionals <span><math><msup><mrow><mi>I</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msup></math></span> characterise the asymptotic Markovian dynamics among these wells. This expansion provides therefore an alternative description of the metastable behaviour of a sequence of Markovian dynamics. Together with the results in Bertin et al. (2024) and Landim (2023) this work finishes the project of characterising the hierarchical metastable behaviour of finite-state Markov chains by means of the <span><math><mi>Γ</mi></math></span>-expansion of large deviations rate functionals. In addition, we present optimal conditions under which the measure (Donsker–Varadhan) or the measure-current large deviations rate functional determines the original dynamics, and calculate the first and second derivatives of the measure large deviations rate functional, thereby generalising the results for i.i.d. random variables.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104733"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001760","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a sequence of continuous-time Markov chains (Xt(n):t0) evolving on a fixed finite state space V. Let In be the measure-current large deviations rate functional for Xt(n), as t. Under a hypothesis on the jump rates, we prove that In can be written as In=I(0)+1pq(1/θn(p))I(p) for some rate functionals I(p). The weights θn(p) correspond to the time-scales at which the sequence of Markov chains Xt(n) evolves among the metastable wells, and the rate functionals I(p) characterise the asymptotic Markovian dynamics among these wells. This expansion provides therefore an alternative description of the metastable behaviour of a sequence of Markovian dynamics. Together with the results in Bertin et al. (2024) and Landim (2023) this work finishes the project of characterising the hierarchical metastable behaviour of finite-state Markov chains by means of the Γ-expansion of large deviations rate functionals. In addition, we present optimal conditions under which the measure (Donsker–Varadhan) or the measure-current large deviations rate functional determines the original dynamics, and calculate the first and second derivatives of the measure large deviations rate functional, thereby generalising the results for i.i.d. random variables.
不可逆有限状态马尔可夫链的测量电流大偏差率泛函的Γ-expansion
考虑一个连续时间马尔可夫链序列(Xt(n):t≥0)在固定有限状态空间v上演化,设In为Xt(n)在t→∞时的测量电流大偏差率泛函。在跳跃率的假设下,证明了对于某些速率泛函I(p), In可以写成In=I(0)+∑1≤p≤q(1/θn(p))I(p)。权值θn(p)对应于亚稳态井中马尔可夫链序列Xt(n)演化的时间尺度,速率泛函I(p)表征了这些井之间的渐近马尔可夫动力学。因此,这种扩展提供了对一系列马尔可夫动力学的亚稳态行为的另一种描述。与Bertin等人(2024)和Landim(2023)的结果一起,这项工作完成了通过大偏差率泛函Γ-expansion表征有限状态马尔可夫链的分层亚稳行为的项目。此外,我们提出了测量(Donsker-Varadhan)或测量-电流大偏差率泛函决定原始动态的最佳条件,并计算了测量大偏差率泛函的一阶和二阶导数,从而推广了i.i.d随机变量的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信