{"title":"R3随机驯服Chemotaxis-Navier-Stokes系统的全局强解","authors":"Fan Xu, Lei Zhang, Bin Liu","doi":"10.1016/j.spa.2025.104732","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we consider the 3D Cauchy problem for a coupled system arising in biomathematics, consisting of a chemotaxis model with a cubic logistic source and the stochastic tamed Navier–Stokes equations (STCNS, for short). Our main goal is to establish the existence and uniqueness of a global strong solution (strong in both the probabilistic and PDE senses) for the 3D STCNS system with large initial data. To achieve this, we first introduce a triple approximation scheme by using the Friedrichs mollifier, frequency truncation operators, and cut-off functions. This scheme enables the construction of sufficiently smooth approximate solutions and facilitates the effective application of the entropy-energy method. Then, based on a newly derived stochastic version of the entropy-energy inequality, we further establish some a priori higher-order energy estimates, which together with the stochastic compactness method, allow us to construct the strong solution for the STCNS system.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104732"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global strong solution for the stochastic tamed Chemotaxis–Navier–Stokes system in R3\",\"authors\":\"Fan Xu, Lei Zhang, Bin Liu\",\"doi\":\"10.1016/j.spa.2025.104732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we consider the 3D Cauchy problem for a coupled system arising in biomathematics, consisting of a chemotaxis model with a cubic logistic source and the stochastic tamed Navier–Stokes equations (STCNS, for short). Our main goal is to establish the existence and uniqueness of a global strong solution (strong in both the probabilistic and PDE senses) for the 3D STCNS system with large initial data. To achieve this, we first introduce a triple approximation scheme by using the Friedrichs mollifier, frequency truncation operators, and cut-off functions. This scheme enables the construction of sufficiently smooth approximate solutions and facilitates the effective application of the entropy-energy method. Then, based on a newly derived stochastic version of the entropy-energy inequality, we further establish some a priori higher-order energy estimates, which together with the stochastic compactness method, allow us to construct the strong solution for the STCNS system.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"189 \",\"pages\":\"Article 104732\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001759\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001759","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Global strong solution for the stochastic tamed Chemotaxis–Navier–Stokes system in R3
In this work, we consider the 3D Cauchy problem for a coupled system arising in biomathematics, consisting of a chemotaxis model with a cubic logistic source and the stochastic tamed Navier–Stokes equations (STCNS, for short). Our main goal is to establish the existence and uniqueness of a global strong solution (strong in both the probabilistic and PDE senses) for the 3D STCNS system with large initial data. To achieve this, we first introduce a triple approximation scheme by using the Friedrichs mollifier, frequency truncation operators, and cut-off functions. This scheme enables the construction of sufficiently smooth approximate solutions and facilitates the effective application of the entropy-energy method. Then, based on a newly derived stochastic version of the entropy-energy inequality, we further establish some a priori higher-order energy estimates, which together with the stochastic compactness method, allow us to construct the strong solution for the STCNS system.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.