{"title":"Covariance operator estimation via adaptive thresholding","authors":"Omar Al-Ghattas, Daniel Sanz-Alonso","doi":"10.1016/j.spa.2025.104705","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies sparse covariance operator estimation for nonstationary processes with sharply varying marginal variance and small correlation lengthscale. We introduce a covariance operator estimator that adaptively thresholds the sample covariance function using an estimate of the variance component. Building on recent results from empirical process theory, we derive an operator norm bound on the estimation error in terms of the sparsity level of the covariance and the expected supremum of a normalized process. Our theory and numerical simulations demonstrate the advantage of adaptive threshold estimators over universal threshold and sample covariance estimators in nonstationary settings.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104705"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001462","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies sparse covariance operator estimation for nonstationary processes with sharply varying marginal variance and small correlation lengthscale. We introduce a covariance operator estimator that adaptively thresholds the sample covariance function using an estimate of the variance component. Building on recent results from empirical process theory, we derive an operator norm bound on the estimation error in terms of the sparsity level of the covariance and the expected supremum of a normalized process. Our theory and numerical simulations demonstrate the advantage of adaptive threshold estimators over universal threshold and sample covariance estimators in nonstationary settings.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.