Discrete Mathematics最新文献

筛选
英文 中文
On the structure of perfectly divisible graphs 论完全可分图的结构
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-24 DOI: 10.1016/j.disc.2025.114809
Chính T. Hoàng
{"title":"On the structure of perfectly divisible graphs","authors":"Chính T. Hoàng","doi":"10.1016/j.disc.2025.114809","DOIUrl":"10.1016/j.disc.2025.114809","url":null,"abstract":"<div><div>A graph <em>G</em> is perfectly divisible if every induced subgraph <em>H</em> of <em>G</em> contains a set <em>X</em> of vertices such that <em>X</em> meets all largest cliques of <em>H</em>, and <em>X</em> induces a perfect graph. The chromatic number of a perfectly divisible graph <em>G</em> is bounded by <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> where <em>ω</em> denotes the number of vertices in a largest clique of <em>G</em>. A graph <em>G</em> is minimally non-perfectly divisible if <em>G</em> is not perfectly divisible but each of its proper induced subgraph is. A set <em>C</em> of vertices of <em>G</em> is a clique cutset if <em>C</em> induces a clique in <em>G</em>, and <span><math><mi>G</mi><mo>−</mo><mi>C</mi></math></span> is disconnected. We prove that a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free minimally non-perfectly divisible graph cannot contain a clique cutset. This result allows us to re-establish several theorems on the perfect divisibility of some classes of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs. We will show that recognizing perfectly divisible graphs is NP-hard.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114809"},"PeriodicalIF":0.7,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Cayley graphs and perfect code 广义Cayley图和完美代码
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-24 DOI: 10.1016/j.disc.2025.114805
Fateme Sadat Seiedali , Zeinab Akhlaghi , Behrooz Khosravi
{"title":"Generalized Cayley graphs and perfect code","authors":"Fateme Sadat Seiedali ,&nbsp;Zeinab Akhlaghi ,&nbsp;Behrooz Khosravi","doi":"10.1016/j.disc.2025.114805","DOIUrl":"10.1016/j.disc.2025.114805","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A subset &lt;em&gt;C&lt;/em&gt; of the vertex set of a graph Γ is said to be &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-regular if &lt;em&gt;C&lt;/em&gt; induces an &lt;em&gt;a&lt;/em&gt;-regular subgraph and every vertex outside &lt;em&gt;C&lt;/em&gt; is adjacent to exactly &lt;em&gt;b&lt;/em&gt; vertices in &lt;em&gt;C&lt;/em&gt;. A &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-regular set is called a perfect code. Let &lt;em&gt;G&lt;/em&gt; be a group and &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;Aut&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;id&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, with &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;∅&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The generalized Cayley graph of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with respect to &lt;em&gt;S&lt;/em&gt; is a graph with vertex set &lt;em&gt;G&lt;/em&gt; and two distinct elements &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are adjacent if and only if &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. If &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;id&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then the described graph is called a Cayley graph of &lt;em&gt;G&lt;/em&gt; with respect to &lt;em&gt;S&lt;/em&gt;. By an &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-regular set (resp. a perfect code) of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; we mean an &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-regular set (resp. a perfect code) in a generalized Cayley graph of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with respect to some subset &lt;em&gt;S&lt;/em&gt;. Let &lt;em&gt;G&lt;/em&gt; be a group, &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;Aut&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;id&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;em&gt;H&lt;/em&gt; be a subgroup of &lt;em&gt;G&lt;/em&gt;. In this paper, we give a necessary and sufficient condition for &lt;em&gt;H&lt;/em&gt; to be a perfect code of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. This result is a generalization of &lt;span&gt;&lt;span&gt;[9, Theorem 3.1]&lt;/span&gt;&lt;/span&gt; that gives a condition for a subgroup to be a perfect code in a Cayley graph of &lt;em&gt;G&lt;/em&gt;. As another result, when &lt;em&gt;G&lt;/em&gt; is an abelian group, we determine all pairs &lt;span","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114805"},"PeriodicalIF":0.7,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maximum Wiener index of a uniform hypergraph 一致超图的最大Wiener索引
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-23 DOI: 10.1016/j.disc.2025.114797
Stijn Cambie , Ervin Győri , Nika Salia , Casey Tompkins , James Tuite
{"title":"The maximum Wiener index of a uniform hypergraph","authors":"Stijn Cambie ,&nbsp;Ervin Győri ,&nbsp;Nika Salia ,&nbsp;Casey Tompkins ,&nbsp;James Tuite","doi":"10.1016/j.disc.2025.114797","DOIUrl":"10.1016/j.disc.2025.114797","url":null,"abstract":"<div><div>The Wiener index of a (hyper)graph is calculated by summing up the distances between all pairs of vertices. We determine the maximum possible Wiener index of a connected <em>n</em>-vertex <em>k</em>-uniform hypergraph and characterize all hypergraphs attaining the maximum Wiener index for every <em>n</em> and <em>k</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114797"},"PeriodicalIF":0.7,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collatz high cycles do not exist Collatz高周期不存在
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-23 DOI: 10.1016/j.disc.2025.114812
Kevin Knight
{"title":"Collatz high cycles do not exist","authors":"Kevin Knight","doi":"10.1016/j.disc.2025.114812","DOIUrl":"10.1016/j.disc.2025.114812","url":null,"abstract":"<div><div>The Collatz function takes odd <em>n</em> to <span><math><mo>(</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> and even <em>n</em> to <span><math><mi>n</mi><mo>/</mo><mn>2</mn></math></span>. Under the iterated Collatz function, every positive integer is conjectured to end up in the trivial cycle 1-2-1. Two types of rational Collatz cycles are of special interest. Consider the set <span><math><mi>S</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> consisting of the smallest members of <em>k</em>-length cycles with <em>x</em> odd terms. The <em>circuit</em> contains the smallest member of <span><math><mi>S</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span>, while the <em>high cycle</em> contains the largest. It is known that no circuits of positive integers exist (except 1-2-1); this paper shows that there are likewise no high cycles of positive integers.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114812"},"PeriodicalIF":0.7,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonian claw-free graphs with path-type local degree conditions 具有路径型局部度条件的哈密顿无爪图
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-23 DOI: 10.1016/j.disc.2025.114807
Xia Liu, Miao Wang, Shuo Zhang
{"title":"Hamiltonian claw-free graphs with path-type local degree conditions","authors":"Xia Liu,&nbsp;Miao Wang,&nbsp;Shuo Zhang","doi":"10.1016/j.disc.2025.114807","DOIUrl":"10.1016/j.disc.2025.114807","url":null,"abstract":"<div><div>Let <em>k</em> be an integer and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be a path on <em>k</em> vertices. For a graph <em>H</em> with an induced <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, define <span><math><msub><mrow><mi>δ</mi></mrow><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo></math></span>: <em>v</em> is an end-vertex of an induced <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of <em>H</em>}. In this paper, we prove that for a 3-connected non-Hamiltonian claw-free graph <em>H</em>, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>δ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for any <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>9</mn></math></span>. As by-products, we obtained two results extend the results in Chen et al. (2017) <span><span>[10]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114807"},"PeriodicalIF":0.7,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toughness, Hamiltonicity and eigenvalues of graphs 图的韧性、哈密性和特征值
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-23 DOI: 10.1016/j.disc.2025.114806
Hongzhang Chen , Jianxi Li , Shou-Jun Xu
{"title":"Toughness, Hamiltonicity and eigenvalues of graphs","authors":"Hongzhang Chen ,&nbsp;Jianxi Li ,&nbsp;Shou-Jun Xu","doi":"10.1016/j.disc.2025.114806","DOIUrl":"10.1016/j.disc.2025.114806","url":null,"abstract":"<div><div>For a real number <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, we say a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is <em>t</em>-tough if <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mi>t</mi><mo>⋅</mo><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></math></span> for all <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span>, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></math></span> is the number of components of <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span>. The toughness <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the maximum <em>t</em> for which <em>G</em> is <em>t</em>-tough. Firstly, we provide a lower bound for <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in terms of its normalized Laplacian eigenvalues, improving or generalizing known lower bounds established by Huang, Das and Zhu (2022), Gu (2021) and Zhang (2023). We also derive upper bounds for certain eigenvalues in a regular graph to ensure that the graph is <em>t</em>-tough, where <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span> is an integer, which extends the related result of Cioabă and Wong (2014). Additionally, we establish a sufficient condition involving the number of <em>r</em>-cliques to ensure the existence of a Hamiltonian cycle in a <em>t</em>-tough graph, where <em>r</em> is an integer with <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, which improves upon the sufficient condition based on the number of edges proposed by Cai, Yu, Xu and Yu (2022). Finally, we provide a spectral condition to guarantee the existence of a Hamiltonian cycle in <em>t</em>-tough graphs, thereby addressing the problem posed by Fan, Lin and Lu (2023) for integers <span><math><mi>t</mi><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114806"},"PeriodicalIF":0.7,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partite saturation number of cycles 环的部饱和数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-22 DOI: 10.1016/j.disc.2025.114802
Yiduo Xu , Zhen He , Mei Lu
{"title":"Partite saturation number of cycles","authors":"Yiduo Xu ,&nbsp;Zhen He ,&nbsp;Mei Lu","doi":"10.1016/j.disc.2025.114802","DOIUrl":"10.1016/j.disc.2025.114802","url":null,"abstract":"<div><div>A graph <em>H</em> is said to be <em>F</em>-saturated relative to <em>G</em>, if <em>H</em> does not contain any copy of <em>F</em>, but the addition of any edge <em>e</em> in <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>﹨</mo><mi>E</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> would create a copy of <em>F</em>. The minimum size of an <em>F</em>-saturated graph relative to <em>G</em> is denoted by <span><math><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be the complete <em>k</em>-partite graph containing <em>n</em> vertices in each part and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> be the cycle of length <em>ℓ</em>. In this paper we give an asymptotically tight bound of <span><math><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> for all <span><math><mi>ℓ</mi><mo>≥</mo><mn>4</mn><mo>,</mo><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> except <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>4</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. Moreover, we determine the exact value of <span><math><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>k</mi><mo>&gt;</mo><mi>ℓ</mi><mo>=</mo><mn>4</mn></math></span> and <span><math><mn>5</mn><mo>≥</mo><mi>ℓ</mi><mo>&gt;</mo><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114802"},"PeriodicalIF":0.7,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved result on the stability of odd cycles 关于奇环稳定性的一个改进结果
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-22 DOI: 10.1016/j.disc.2025.114801
Zilong Yan , Xiaoli Yuan, Yuejian Peng
{"title":"An improved result on the stability of odd cycles","authors":"Zilong Yan ,&nbsp;Xiaoli Yuan,&nbsp;Yuejian Peng","doi":"10.1016/j.disc.2025.114801","DOIUrl":"10.1016/j.disc.2025.114801","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a family consisting of some odd cycles. Suppose that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the shortest odd cycle not in &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the longest odd cycle in &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; denote the graph obtained by taking &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; vertex-disjoint copies of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and selecting a vertex in each of them such that these vertices form a cycle of length &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we show that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;79&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;12&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;em&gt;G&lt;/em&gt; is an &lt;em&gt;n&lt;/em&gt;-vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-free graph with minimum degree &lt;span&gt;&lt;math&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;em&gt;G&lt;/em&gt; is bipartite. The condition on the minimum degree is tight evidenced by &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Furthermore, we show the only non-bipartite &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-free graph with minimum degree &lt;span&gt;&lt;math&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. This improves the condition of &lt;em&gt;n&lt;/em&gt; in a result of Yuan-Peng. The previous known result of Yuan-Peng corresponding to the case &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mr","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114801"},"PeriodicalIF":0.7,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonicity of transitive graphs whose automorphism group has Zp as commutator subgroups 自同构群有Zp为交换子群的传递图的哈密性
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-22 DOI: 10.1016/j.disc.2025.114798
Florian Lehner , Farzad Maghsoudi , Babak Miraftab
{"title":"Hamiltonicity of transitive graphs whose automorphism group has Zp as commutator subgroups","authors":"Florian Lehner ,&nbsp;Farzad Maghsoudi ,&nbsp;Babak Miraftab","doi":"10.1016/j.disc.2025.114798","DOIUrl":"10.1016/j.disc.2025.114798","url":null,"abstract":"<div><div>In 1982, Durnberger proved that every connected Cayley graph of a finite group with a commutator subgroup of prime order contains a hamiltonian cycle. In this paper, we extend this result to the infinite case. Additionally, we generalize this result to a broader class of infinite graphs <em>X</em>, where the automorphism group of <em>X</em> contains a transitive subgroup <em>G</em> with a cyclic commutator subgroup of prime order.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114798"},"PeriodicalIF":0.7,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145110006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance spectral conditions for ID-factor-criticality and fractional [a,b]-factor of graphs 图的id因子临界和分数因子[a,b]的距离谱条件
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-22 DOI: 10.1016/j.disc.2025.114803
Tingyan Ma , Ligong Wang
{"title":"Distance spectral conditions for ID-factor-criticality and fractional [a,b]-factor of graphs","authors":"Tingyan Ma ,&nbsp;Ligong Wang","doi":"10.1016/j.disc.2025.114803","DOIUrl":"10.1016/j.disc.2025.114803","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be a graph with vertex set &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and edge set &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. A graph is &lt;em&gt;ID&lt;/em&gt;-factor-critical if for every independent set &lt;em&gt;I&lt;/em&gt; of &lt;em&gt;G&lt;/em&gt; whose size has the same parity as &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; has a perfect matching. For two positive integers &lt;em&gt;a&lt;/em&gt; and &lt;em&gt;b&lt;/em&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;em&gt;h&lt;/em&gt;: &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be a function on &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; satisfying &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for any vertex &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Then the spanning subgraph with edge set &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, denoted by &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, is called a fractional &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-factor of &lt;em&gt;G&lt;/em&gt; with indicator function &lt;em&gt;h&lt;/em&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is incident with &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; in &lt;em&gt;G&lt;/em&gt;}. A graph is defined as a fractional &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-deleted graph if for any &lt;span&gt;&lt;math&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; contains a fractional &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-factor. For any integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, a graph has a &lt;em&gt;k&lt;","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114803"},"PeriodicalIF":0.7,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信