Discrete Mathematics最新文献

筛选
英文 中文
Induced matching vs edge open packing: Trees and product graphs
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-03-04 DOI: 10.1016/j.disc.2025.114458
Boštjan Brešar , Tanja Dravec , Jaka Hedžet , Babak Samadi
{"title":"Induced matching vs edge open packing: Trees and product graphs","authors":"Boštjan Brešar ,&nbsp;Tanja Dravec ,&nbsp;Jaka Hedžet ,&nbsp;Babak Samadi","doi":"10.1016/j.disc.2025.114458","DOIUrl":"10.1016/j.disc.2025.114458","url":null,"abstract":"<div><div>Given a graph <em>G</em>, the maximum size of an induced subgraph of <em>G</em> each component of which is a star is called the edge open packing number, <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em>. Similarly, the maximum size of an induced subgraph of <em>G</em> each component of which is the star <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span> is the induced matching number, <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em>. While the inequality <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> clearly holds for all graphs <em>G</em>, we provide a structural characterization of those trees that attain the equality. We prove that the induced matching number of the lexicographic product <span><math><mi>G</mi><mo>∘</mo><mi>H</mi></math></span> of arbitrary two graphs <em>G</em> and <em>H</em> equals <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. By similar techniques, we prove sharp lower and upper bounds on the edge open packing number of the lexicographic product of graphs, which in particular lead to NP-hardness results in triangular graphs for both invariants studied in this paper. For the direct product <span><math><mi>G</mi><mo>×</mo><mi>H</mi></math></span> of two graphs we provide lower bounds on <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>×</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>×</mo><mi>H</mi><mo>)</mo></math></span>, both of which are widely sharp. We also present sharp lower bounds for both invariants in the Cartesian and the strong product of two graphs. Finally, we consider the edge open packing number in hypercubes establishing the exact values of <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> when <em>n</em> is a power of 2, and present a closed formula for the induced matching number of the rooted product of arbitrary two graphs over an arbitrary root vertex.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114458"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On HV-neighborhood group constant sum array
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-03-03 DOI: 10.1016/j.disc.2025.114456
Karthik S, Krishnan Paramasivam
{"title":"On HV-neighborhood group constant sum array","authors":"Karthik S,&nbsp;Krishnan Paramasivam","doi":"10.1016/j.disc.2025.114456","DOIUrl":"10.1016/j.disc.2025.114456","url":null,"abstract":"<div><div>A HV-neighborhood group constant sum array with <em>δ</em> distance, is an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> array, whose entries are all non-zero elements of an additive Abelian group Γ such that the sum of group elements assigned to the <em>δ</em>-neighborhood of any cell <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span> in an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> array is a unique element <span><math><mi>μ</mi><mo>∈</mo><mi>Γ</mi></math></span>, where the <em>δ</em>-neighborhood of a cell <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span> in an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> array is the set of cells that are at most <em>δ</em> distance in the right, left, up, and down from <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>, excluding the cell <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>. The element <em>μ</em> is the neighborhood constant sum. In this article, we prove some necessary conditions for the existence of HV-neighborhood group constant sum arrays with <em>δ</em> distance. In addition, if <span><math><mi>δ</mi><mo>=</mo><mn>1</mn></math></span>, a method to construct HV-neighborhood group constant sum arrays and a characterization of HV-neighborhood Klein four-group constant sum arrays are given.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114456"},"PeriodicalIF":0.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
F2F2[u2]F2[u3]-additive cyclic codes are asymptotically good
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-03-03 DOI: 10.1016/j.disc.2025.114459
Hai Q. Dinh , Bhanu Pratap Yadav , Bac T. Nguyen , Ashish Kumar Upadhyay
{"title":"F2F2[u2]F2[u3]-additive cyclic codes are asymptotically good","authors":"Hai Q. Dinh ,&nbsp;Bhanu Pratap Yadav ,&nbsp;Bac T. Nguyen ,&nbsp;Ashish Kumar Upadhyay","doi":"10.1016/j.disc.2025.114459","DOIUrl":"10.1016/j.disc.2025.114459","url":null,"abstract":"<div><div>In this paper, we construct a class of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes generated by 3-tuples of polynomials, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is the binary field, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>) and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>). We provide their algebraic structure and show that generator matrices can be obtained for all codes of this class. Using a random Bernoulli variable, we investigate the asymptotic properties in this class of codes. Furthermore, let <span><math><mn>0</mn><mo>&lt;</mo><mi>δ</mi><mo>&lt;</mo><mn>1</mn></math></span> be a real number and <span><math><mi>k</mi><mo>,</mo><mi>l</mi></math></span> and <em>t</em> be pairwise co-prime positive odd integers such that the entropy at <span><math><mfrac><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi><mo>)</mo><mi>δ</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> is less than <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, we prove that the relative minimum homogeneous distances converge to <em>δ</em>, and the rates of the random codes converge to <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi></mrow></mfrac></math></span>. Consequently, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes are asymptotically good.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114459"},"PeriodicalIF":0.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path eccentricity of k-AT-free graphs and application on graphs with the consecutive ones property
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-02-28 DOI: 10.1016/j.disc.2025.114449
Paul Bastide , Claire Hilaire , Eileen Robinson
{"title":"Path eccentricity of k-AT-free graphs and application on graphs with the consecutive ones property","authors":"Paul Bastide ,&nbsp;Claire Hilaire ,&nbsp;Eileen Robinson","doi":"10.1016/j.disc.2025.114449","DOIUrl":"10.1016/j.disc.2025.114449","url":null,"abstract":"<div><div>The central path problem is a variation on the single facility location problem. The aim is to find, in a given connected graph <em>G</em>, a path <em>P</em> minimizing its eccentricity, which is the maximal distance from <em>P</em> to any vertex of the graph <em>G</em>. The <em>path eccentricity</em> of <em>G</em> is the minimal eccentricity achievable over all paths in <em>G</em>. In this article we consider the path eccentricity of the class of the <em>k-AT-free graphs</em>. They are graphs in which any set of three vertices contains a pair for which every path between them uses at least one vertex of the closed neighborhood at distance <em>k</em> of the third. We prove that they have path eccentricity bounded by <em>k</em>.</div><div>Moreover, we answer a question of Gómez and Gutiérrez asking if there is a relation between path eccentricity and the <em>consecutive ones property</em>. The latter is the property for a binary matrix to admit a permutation of the rows placing the 1's consecutively on the columns. It was already known that graphs whose adjacency matrices have the consecutive ones property have path eccentricity at most 1, and that the same remains true when the augmented adjacency matrices (with ones on the diagonal) have the consecutive ones property. We generalize these results as follow. We study graphs whose adjacency matrices can be made to satisfy the consecutive ones property after changing some values on the diagonal, and show that those graphs have path eccentricity at most 2, by showing that they are 2-AT-free.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114449"},"PeriodicalIF":0.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On intersecting families of subgraphs of perfect matchings
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-02-28 DOI: 10.1016/j.disc.2025.114460
Melissa Fuentes, Vikram Kamat
{"title":"On intersecting families of subgraphs of perfect matchings","authors":"Melissa Fuentes,&nbsp;Vikram Kamat","doi":"10.1016/j.disc.2025.114460","DOIUrl":"10.1016/j.disc.2025.114460","url":null,"abstract":"<div><div>The seminal Erdős–Ko–Rado (EKR) theorem states that if <span><math><mi>F</mi></math></span> is a family of <em>k</em>-subsets of an <em>n</em>-element set <em>X</em> for <span><math><mi>k</mi><mo>≤</mo><mi>n</mi><mo>/</mo><mn>2</mn></math></span> such that every pair of subsets in <span><math><mi>F</mi></math></span> has a nonempty intersection, then <span><math><mi>F</mi></math></span> can be no bigger than the trivially intersecting family obtained by including all <em>k</em>-subsets of <em>X</em> that contain a fixed element <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span>. This family is called the <em>star</em> centered at <em>x</em>. In this paper, we formulate and prove an EKR theorem for intersecting families of subgraphs of the perfect matching graph. This can be considered a generalization not only of the aforementioned EKR theorem but also of a <em>signed</em> variant of it, first stated by Meyer <span><span>[9]</span></span>, and proved separately by Deza–Frankl <span><span>[3]</span></span> and Bollobás–Leader <span><span>[1]</span></span>. The proof of our main theorem relies on a novel extension of Katona's beautiful <em>cycle method</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114460"},"PeriodicalIF":0.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Padovan graphs
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-02-28 DOI: 10.1016/j.disc.2025.114457
Vesna Iršič Chenoweth , Sandi Klavžar , Gregor Rus , Elif Tan
{"title":"Weighted Padovan graphs","authors":"Vesna Iršič Chenoweth ,&nbsp;Sandi Klavžar ,&nbsp;Gregor Rus ,&nbsp;Elif Tan","doi":"10.1016/j.disc.2025.114457","DOIUrl":"10.1016/j.disc.2025.114457","url":null,"abstract":"<div><div>Weighted Padovan graphs <span><math><msubsup><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>≤</mo><mi>k</mi><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌋</mo></math></span>, are introduced as the graphs whose vertices are all Padovan words of length <em>n</em> with <em>k</em> 1s, two vertices being adjacent if one can be obtained from the other by replacing exactly one 01 with a 10. By definition, <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo><mi>V</mi><mo>(</mo><msubsup><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>|</mo><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <em>n</em>th Padovan number. Two families of graphs isomorphic to weighted Padovan graphs are presented. The order, the size, the degree, the diameter, the cube polynomial, and the automorphism group of weighted Padovan graphs are determined. It is also proved that they are median graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114457"},"PeriodicalIF":0.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remoteness of graphs with given size and connectivity constraints
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-02-26 DOI: 10.1016/j.disc.2025.114451
Peter Dankelmann , Sonwabile Mafunda , Sufiyan Mallu
{"title":"Remoteness of graphs with given size and connectivity constraints","authors":"Peter Dankelmann ,&nbsp;Sonwabile Mafunda ,&nbsp;Sufiyan Mallu","doi":"10.1016/j.disc.2025.114451","DOIUrl":"10.1016/j.disc.2025.114451","url":null,"abstract":"<div><div>Let <em>G</em> be a finite, simple connected graph. The average distance of a vertex <em>v</em> of <em>G</em> is the arithmetic mean of the distances from <em>v</em> to all other vertices of <em>G</em>. The remoteness <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the maximum of the average distances of the vertices of <em>G</em>.</div><div>In this paper, we give sharp upper bounds on the remoteness of a graph of given order, connectivity and size. We also obtain corresponding bound s for 2-edge-connected and 3-edge-connected graphs, and bounds in terms of order and size for triangle-free graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114451"},"PeriodicalIF":0.7,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poset positional games
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-02-25 DOI: 10.1016/j.disc.2025.114455
Guillaume Bagan , Eric Duchêne , Florian Galliot , Valentin Gledel , Mirjana Mikalački , Nacim Oijid , Aline Parreau , Miloš Stojaković
{"title":"Poset positional games","authors":"Guillaume Bagan ,&nbsp;Eric Duchêne ,&nbsp;Florian Galliot ,&nbsp;Valentin Gledel ,&nbsp;Mirjana Mikalački ,&nbsp;Nacim Oijid ,&nbsp;Aline Parreau ,&nbsp;Miloš Stojaković","doi":"10.1016/j.disc.2025.114455","DOIUrl":"10.1016/j.disc.2025.114455","url":null,"abstract":"<div><div>We propose a generalization of positional games, supplementing them with a restriction on the order in which the elements of the board are allowed to be claimed. We introduce poset positional games, which are positional games with an additional structure – a poset on the elements of the board. Throughout the game play, based on this poset and the set of the board elements that are claimed up to that point, we reduce the set of available moves for the player whose turn it is – an element of the board can only be claimed if all the smaller elements in the poset are already claimed.</div><div>We proceed to analyze these games in more detail, with a prime focus on the most studied convention, the Maker-Breaker games. First we build a general framework around poset positional games. Then, we perform a comprehensive study of the complexity of determining the game outcome, conditioned on the structure of the family of winning sets on the one side and the structure of the poset on the other.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114455"},"PeriodicalIF":0.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143479707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The signless Laplacian spectral radius of book-free graphs
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-02-21 DOI: 10.1016/j.disc.2025.114448
Ming-Zhu Chen , Ya-Lei Jin , Peng-Li Zhang
{"title":"The signless Laplacian spectral radius of book-free graphs","authors":"Ming-Zhu Chen ,&nbsp;Ya-Lei Jin ,&nbsp;Peng-Li Zhang","doi":"10.1016/j.disc.2025.114448","DOIUrl":"10.1016/j.disc.2025.114448","url":null,"abstract":"<div><div>Given a graph <em>H</em>, a graph is called <em>H</em>-free if it does not contain <em>H</em> as a subgraph. For a positive integer <em>k</em>, a book <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is a graph consisting of <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> triangles sharing a common edge. In this paper, let <em>G</em> be a <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph of order <span><math><mi>n</mi><mo>≥</mo><mn>49</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>22</mn><mi>k</mi><mo>+</mo><mn>4</mn></math></span>. Then the signless Laplacian spectral radius <span><math><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn><mi>k</mi><mo>+</mo><msqrt><mrow><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>8</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> with equality if and only if <span><math><mi>G</mi><mo>=</mo><msub><mrow><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>k</mi></mrow></msub><mo>∨</mo><mi>H</mi></math></span>, where <em>k</em> or <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> is even, and <em>H</em> is a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-free <em>k</em>-regular graph of order <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span>. Furthermore, if <em>k</em> and <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> are both odd, the extremal graphs with the maximum signless Laplacian spectral radius are also characterized.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114448"},"PeriodicalIF":0.7,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hoffmann-Ostenhof's 3-Decomposition Conjecture
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-02-20 DOI: 10.1016/j.disc.2025.114454
Genghua Fan, Chuixiang Zhou
{"title":"Hoffmann-Ostenhof's 3-Decomposition Conjecture","authors":"Genghua Fan,&nbsp;Chuixiang Zhou","doi":"10.1016/j.disc.2025.114454","DOIUrl":"10.1016/j.disc.2025.114454","url":null,"abstract":"<div><div>The 3-Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree, a set of cycles, and a matching. It has been proved independently by different groups of people that every connected cubic graph can be decomposed into a spanning tree, a set of cycles, and a set of vertex-disjoint paths of at most two edges. In this paper, we establish a bound on the number of paths of two edges, proving that every connected cubic graph on <em>n</em> vertices can be decomposed into a spanning tree, a set of cycles, and a set of vertex-disjoint paths of at most two edges such that the number of paths of two edges is at most <span><math><mfrac><mrow><mi>n</mi><mo>−</mo><mn>4</mn></mrow><mrow><mn>6</mn></mrow></mfrac></math></span>. Our proof is based on a structural analysis, which might provide a new approach to attack the 3-Decomposition Conjecture.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114454"},"PeriodicalIF":0.7,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信