Discrete Mathematics最新文献

筛选
英文 中文
On weak cop numbers of transitive graphs 关于传递图的弱cop数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-12 DOI: 10.1016/j.disc.2025.114559
Florian Lehner
{"title":"On weak cop numbers of transitive graphs","authors":"Florian Lehner","doi":"10.1016/j.disc.2025.114559","DOIUrl":"10.1016/j.disc.2025.114559","url":null,"abstract":"<div><div>The weak cop number of infinite graphs can be seen as a coarse-geometric analogue to the cop number of finite graphs. We show that every vertex transitive graph with at least one thick end has infinite weak cop number. It follows that every connected, vertex transitive graph has weak cop number 1 or ∞, answering a question posed by Lee, Martínez-Pedroza, and Rodríguez-Quinche, and reiterated in recent preprints by Appenzeller and Klinge, and by Esperet, Gahlawat, and Giocanti.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114559"},"PeriodicalIF":0.7,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143934869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution of hooks in self-conjugate partitions 自共轭分区中钩的分布
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-12 DOI: 10.1016/j.disc.2025.114563
William Craig , Ken Ono , Ajit Singh
{"title":"Distribution of hooks in self-conjugate partitions","authors":"William Craig ,&nbsp;Ken Ono ,&nbsp;Ajit Singh","doi":"10.1016/j.disc.2025.114563","DOIUrl":"10.1016/j.disc.2025.114563","url":null,"abstract":"<div><div>We confirm the speculation that the distribution of <em>t</em>-hooks among unrestricted integer partitions essentially descends to self-conjugate partitions. Namely, we prove that the number of hooks of length <em>t</em> among the size <em>n</em> self-conjugate partitions is asymptotically normally distributed with mean <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and variance <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span><span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><mi>π</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mn>4</mn></mrow></mfrac><mspace></mspace><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><mspace></mspace><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>∼</mo><mfrac><mrow><mrow><mo>(</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mo>)</mo></mrow><msqrt><mrow><mn>6</mn><mi>n</mi></mrow></msqrt></mrow><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mo>=</mo><mn>1</mn></math></span> if <em>t</em> is odd and is 0 otherwise.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114563"},"PeriodicalIF":0.7,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143934868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the domination number of proper power graphs of finite groups 有限群的真幂图的支配数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-09 DOI: 10.1016/j.disc.2025.114557
Sudip Bera , Hiranya Kishore Dey , Kamal Lochan Patra , Binod Kumar Sahoo
{"title":"On the domination number of proper power graphs of finite groups","authors":"Sudip Bera ,&nbsp;Hiranya Kishore Dey ,&nbsp;Kamal Lochan Patra ,&nbsp;Binod Kumar Sahoo","doi":"10.1016/j.disc.2025.114557","DOIUrl":"10.1016/j.disc.2025.114557","url":null,"abstract":"<div><div>The proper power graph <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is the simple graph whose vertices are the <em>nonindentity</em> elements of <em>G</em> and two distinct vertices are adjacent if one of them is a power of the other. In this paper, we study the domination number <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> by relating it with the number of distinct prime order subgroups of <em>G</em>. For a nilpotent group <em>G</em>, we give a sharp upper bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>. When <em>G</em> is a direct product of two nontrivial groups <em>H</em> and <em>K</em>, we give a sharp lower bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> in terms of the number of components of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. As an application, we determine <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> when <em>G</em> is a nilpotent group whose order is divisible by at most two distinct primes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114557"},"PeriodicalIF":0.7,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paintability of r-chromatic graphs r色图的可绘性
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-09 DOI: 10.1016/j.disc.2025.114558
Peter Bradshaw , Jinghan A. Zeng
{"title":"Paintability of r-chromatic graphs","authors":"Peter Bradshaw ,&nbsp;Jinghan A. Zeng","doi":"10.1016/j.disc.2025.114558","DOIUrl":"10.1016/j.disc.2025.114558","url":null,"abstract":"<div><div>The online list coloring game is a two-player graph-coloring game played on a graph <em>G</em> as follows. On each turn, a Lister reveals a new color <em>c</em> at some subset <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of uncolored vertices, and then a Painter chooses an independent subset of <em>S</em> to which to assign <em>c</em>. As the game is played, the revealed colors at each vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> form a color set <span><math><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>, often called a list. The <em>paintability</em> of <em>G</em> measures the minimum value <em>k</em> for which Painter has a strategy to complete a coloring of <em>G</em> in such a way that <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mi>k</mi></math></span> for each vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The paintability of a graph is an upper bound for its list chromatic number, or choosability.</div><div>The online list coloring game is a special case of the <em>DP-painting</em> game, which is defined similarly using the setting of DP-coloring. In the DP-painting game, the Lister reveals correspondence covers of a graph <em>G</em> rather than colors, and the Painter chooses independent subsets of these covers. The DP-painting game has a parameter known as <em>DP-paintability</em> which is analogous to paintability.</div><div>In this paper, we consider upper bounds for the paintability and DP-paintability of a graph <em>G</em> with large maximum degree Δ and chromatic number at most some fixed value <em>r</em>. We prove that the paintability of <em>G</em> is at most <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn><mi>r</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow><mi>Δ</mi><mo>+</mo><mn>2</mn></math></span> and that the DP-paintability of <em>G</em> is at most <span><math><mi>Δ</mi><mo>−</mo><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>Δ</mi><mi>log</mi><mo>⁡</mo><mi>Δ</mi></mrow></msqrt><mo>)</mo></math></span>. We prove our first upper bound using Alon-Tarsi orientations, and we prove our second upper bound by considering the <em>strict type-</em>3 <em>degeneracy</em> parameter recently introduced by Zhou, Zhu, and Zhu.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114558"},"PeriodicalIF":0.7,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143929064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An odd 4-coloring of a maximal outerplanar graph 极大外平面图的奇4着色
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-08 DOI: 10.1016/j.disc.2025.114556
Masaki Kashima , Shun-ichi Maezawa , Kakeru Osako , Kenta Ozeki , Shoichi Tsuchiya
{"title":"An odd 4-coloring of a maximal outerplanar graph","authors":"Masaki Kashima ,&nbsp;Shun-ichi Maezawa ,&nbsp;Kakeru Osako ,&nbsp;Kenta Ozeki ,&nbsp;Shoichi Tsuchiya","doi":"10.1016/j.disc.2025.114556","DOIUrl":"10.1016/j.disc.2025.114556","url":null,"abstract":"<div><div>An odd coloring of a graph <em>G</em> is a proper coloring with the following property: For every vertex <em>v</em> of <em>G</em>, there exists a color <em>i</em> such that there are an odd number of vertices of color <em>i</em> in the neighborhood of <em>v</em>. Caro, Petruševski, and Škrekovski proved that every outerplanar graph admits an odd 5-coloring. Since the cycle of length 5 does not admit an odd 4-coloring, this result is best possible. In this paper, we prove that every maximal outerplanar graph admits an odd 4-coloring. We also show that the list version holds.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114556"},"PeriodicalIF":0.7,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143922397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Erdős–Ko–Rado type theorem for subgraphs of perfect matchings 完美匹配子图的Erdős-Ko-Rado类型定理
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-07 DOI: 10.1016/j.disc.2025.114560
Dániel T. Nagy
{"title":"An Erdős–Ko–Rado type theorem for subgraphs of perfect matchings","authors":"Dániel T. Nagy","doi":"10.1016/j.disc.2025.114560","DOIUrl":"10.1016/j.disc.2025.114560","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be a 2<em>n</em>-vertex graph with <em>n</em> pairwise disjoint edges and let <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the family of subsets of <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> that span exactly <em>p</em> edges and <em>s</em> isolated vertices. We prove that for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>p</mi><mo>+</mo><mi>s</mi></math></span> this family has the Erdős–Ko–Rado property: the size of the largest intersecting family is equal to the number of sets containing a fixed vertex. The bound <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>p</mi><mo>+</mo><mi>s</mi></math></span> is the best possible, improving a recent theorem with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>2</mn><mi>s</mi></math></span> by Fuentes and Kamat.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114560"},"PeriodicalIF":0.7,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143917513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Line graphs with the largest eigenvalue multiplicity 具有最大特征值多重性的线形图
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-06 DOI: 10.1016/j.disc.2025.114562
Wenhao Zhen, Dein Wong , Songnian Xu
{"title":"Line graphs with the largest eigenvalue multiplicity","authors":"Wenhao Zhen,&nbsp;Dein Wong ,&nbsp;Songnian Xu","doi":"10.1016/j.disc.2025.114562","DOIUrl":"10.1016/j.disc.2025.114562","url":null,"abstract":"<div><div>For a connected graph <em>G</em>, we denote by <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo></math></span>, <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the line graph of <em>G</em>, the eigenvalue multiplicity of <em>λ</em> in <em>G</em>, the cyclomatic number and the number of pendant vertices in <em>G</em>, respectively. In 2023, Yang et al. <span><span>[12]</span></span> proved that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any tree <em>T</em> with <span><math><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, and characterized all trees <em>T</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. In 2024, Chang et al. <span><span>[2]</span></span> proved that, if <em>G</em> is not a cycle, then <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, and they characterized all graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The authors of <span><span>[2]</span></span> particularly stated that it seems somewhat difficult to characterize the extremal graphs <em>G</em> with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for an arbitrary eigenvalue <em>λ</em> of <span><math><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we give this problem a complete solution.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114562"},"PeriodicalIF":0.7,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143907572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saturation numbers of bipartite graphs in random graphs 随机图中二部图的饱和数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-05 DOI: 10.1016/j.disc.2025.114561
Meysam Miralaei , Ali Mohammadian , Behruz Tayfeh-Rezaie , Maksim Zhukovskii
{"title":"Saturation numbers of bipartite graphs in random graphs","authors":"Meysam Miralaei ,&nbsp;Ali Mohammadian ,&nbsp;Behruz Tayfeh-Rezaie ,&nbsp;Maksim Zhukovskii","doi":"10.1016/j.disc.2025.114561","DOIUrl":"10.1016/j.disc.2025.114561","url":null,"abstract":"<div><div>For a given graph <em>F</em>, the <em>F</em>-saturation number of a graph <em>G</em>, denoted by <span><math><mrow><mi>sat</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the minimum number of edges in an edge-maximal <em>F</em>-free subgraph of <em>G</em>. In 2017, Korándi and Sudakov determined <figure><img></figure> asymptotically, where <figure><img></figure> denotes the Erdős–Rényi random graph and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> is the complete graph on <em>r</em> vertices. In this paper, among other results, we present an asymptotic upper bound on <figure><img></figure> for any bipartite graph <em>F</em> and also an asymptotic lower bound on <figure><img></figure> for any complete bipartite graph <em>F</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114561"},"PeriodicalIF":0.7,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143904231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group irregularity strength of disconnected graphs 不连通图的群不规则性强度
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-04 DOI: 10.1016/j.disc.2025.114548
Sylwia Cichacz, Barbara Krupińska
{"title":"Group irregularity strength of disconnected graphs","authors":"Sylwia Cichacz,&nbsp;Barbara Krupińska","doi":"10.1016/j.disc.2025.114548","DOIUrl":"10.1016/j.disc.2025.114548","url":null,"abstract":"<div><div>We investigate the <em>group irregular strength</em> <span><math><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of graphs, i.e. the smallest value of <em>s</em> such that for any Abelian group Γ of order <em>s</em> exists a function <span><math><mi>g</mi><mo>:</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mi>Γ</mi></math></span> such that sums of edge labels at every vertex is distinct. We give results for bound and exact values of <span><math><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> for graphs without small stars as components.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114548"},"PeriodicalIF":0.7,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143902114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal coloring of (P2 + P3, gem)-free graphs (P2 + P3, gem)无图形的最优着色
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-02 DOI: 10.1016/j.disc.2025.114554
Arnab Char, T. Karthick
{"title":"Optimal coloring of (P2 + P3, gem)-free graphs","authors":"Arnab Char,&nbsp;T. Karthick","doi":"10.1016/j.disc.2025.114554","DOIUrl":"10.1016/j.disc.2025.114554","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Given a graph &lt;em&gt;G&lt;/em&gt;, the parameters &lt;span&gt;&lt;math&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; respectively denote the chromatic number and the clique number of &lt;em&gt;G&lt;/em&gt;. A function &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is called a &lt;em&gt;χ-binding function&lt;/em&gt; for the given class of graphs &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; if every &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; satisfies &lt;span&gt;&lt;math&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and the &lt;em&gt;smallest χ-binding function&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is defined as &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mtext&gt; and &lt;/mtext&gt;&lt;mi&gt;ω&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. In general, the problem of obtaining the smallest &lt;em&gt;χ&lt;/em&gt;-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, gem)-free graphs, and prove that the function &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; defined by &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; is the smallest &lt;em&gt;χ&lt;/em&gt;-binding function for the class of (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, gem)-free graphs. Also we completely characterize the class of (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, gem)-free","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114554"},"PeriodicalIF":0.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信