Discrete Mathematics最新文献

筛选
英文 中文
Corrigendum to “The king degree and the second out-degree of tournaments” [Discrete Math. 348 (9) (2025) 114497] “比赛的国王度和第二出位度”的勘误表[离散数学。348 (9)(2025)114497]
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-02 DOI: 10.1016/j.disc.2025.114623
Aya Alhussein , Ayman El Zein
{"title":"Corrigendum to “The king degree and the second out-degree of tournaments” [Discrete Math. 348 (9) (2025) 114497]","authors":"Aya Alhussein , Ayman El Zein","doi":"10.1016/j.disc.2025.114623","DOIUrl":"10.1016/j.disc.2025.114623","url":null,"abstract":"","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114623"},"PeriodicalIF":0.7,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144221555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The threshold for powers of tight Hamilton cycles in random hypergraphs 随机超图中紧汉密尔顿环幂的阈值
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-02 DOI: 10.1016/j.disc.2025.114599
Yulin Chang , Jie Han , Lin Sun
{"title":"The threshold for powers of tight Hamilton cycles in random hypergraphs","authors":"Yulin Chang ,&nbsp;Jie Han ,&nbsp;Lin Sun","doi":"10.1016/j.disc.2025.114599","DOIUrl":"10.1016/j.disc.2025.114599","url":null,"abstract":"<div><div>We investigate the occurrence of powers of tight Hamilton cycles in random hypergraphs. For every <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, we show that there exists a constant <span><math><mi>C</mi><mo>&gt;</mo><mn>0</mn></math></span> such that if <span><math><mi>p</mi><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mi>C</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup></math></span> then asymptotically almost surely the random hypergraph <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> contains the <em>k</em>th power of a tight Hamilton cycle. This improves on a result of Parczyk and Person, who proved the same result under the assumption <span><math><mi>p</mi><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></math></span> using a second moment argument.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114599"},"PeriodicalIF":0.7,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144190464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Every subcubic graph is packing (1,1,2,2,3)-colorable 每个次立方图都是可填充的(1,1,2,2,3)
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-30 DOI: 10.1016/j.disc.2025.114610
Xujun Liu , Xin Zhang , Yanting Zhang
{"title":"Every subcubic graph is packing (1,1,2,2,3)-colorable","authors":"Xujun Liu ,&nbsp;Xin Zhang ,&nbsp;Yanting Zhang","doi":"10.1016/j.disc.2025.114610","DOIUrl":"10.1016/j.disc.2025.114610","url":null,"abstract":"<div><div>For a sequence <span><math><mi>S</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> of non-decreasing integers, a packing <em>S</em>-coloring of a graph <em>G</em> is a partition of its vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that for every pair of distinct vertices <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>, the distance between <em>u</em> and <em>v</em> is at least <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn></math></span>. The packing chromatic number, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of a graph <em>G</em> is the smallest integer <em>k</em> such that <em>G</em> has a packing <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-coloring. Gastineau and Togni asked an open question “Is it true that the 1-subdivision (<span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) of any subcubic graph <em>G</em> has packing chromatic number at most 5?” and later Brešar, Klavžar, Rall, and Wash conjectured that it is true.</div><div>In this paper, we prove that every subcubic graph has a packing <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>-coloring and it is sharp due to the existence of subcubic graphs that are not packing <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-colorable. As a corollary of our result, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mn>6</mn></math></span> for every subcubic graph <em>G</em>, improving a previous bound (8) due to Balogh, Kostochka, and Liu in 2019, and we are now just one step away from fully solving the conjecture.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114610"},"PeriodicalIF":0.7,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On strong odd colorings of graphs 论图的强奇着色
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-30 DOI: 10.1016/j.disc.2025.114601
Yair Caro , Mirko Petruševski , Riste Škrekovski , Zsolt Tuza
{"title":"On strong odd colorings of graphs","authors":"Yair Caro ,&nbsp;Mirko Petruševski ,&nbsp;Riste Škrekovski ,&nbsp;Zsolt Tuza","doi":"10.1016/j.disc.2025.114601","DOIUrl":"10.1016/j.disc.2025.114601","url":null,"abstract":"<div><div>A strong odd coloring of a simple graph <em>G</em> is a proper coloring of the vertices of <em>G</em> such that for every vertex <em>v</em> and every color <em>c</em>, either <em>c</em> is used an odd number of times in the open neighborhood <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo></math></span> or no neighbor of <em>v</em> is colored by <em>c</em>. The smallest integer <em>k</em> for which <em>G</em> admits a strong odd coloring with <em>k</em> colors is the strong odd chromatic number, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>so</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. These coloring notion and graph parameter were recently defined in Kwon and Park (<span><span>arXiv:2401.11653</span><svg><path></path></svg></span>). We answer a question raised by the originators concerning the existence of a constant bound for the strong odd chromatic number of all planar graphs. We also consider strong odd colorings of trees, unicyclic graphs, claw-free graphs, and graph products.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114601"},"PeriodicalIF":0.7,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lower bound for the energy of graphs in terms of the vertex cover number 用顶点覆盖数表示的图的能量的下界
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-29 DOI: 10.1016/j.disc.2025.114582
S. Akbari , S. Küçükçifçi , H. Saveh , E.Ş. Yazıcı
{"title":"A lower bound for the energy of graphs in terms of the vertex cover number","authors":"S. Akbari ,&nbsp;S. Küçükçifçi ,&nbsp;H. Saveh ,&nbsp;E.Ş. Yazıcı","doi":"10.1016/j.disc.2025.114582","DOIUrl":"10.1016/j.disc.2025.114582","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The energy of the graph &lt;em&gt;G&lt;/em&gt;, denoted by &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, is the sum of the absolute values of its eigenvalues. Wang and Ma proved that if &lt;em&gt;G&lt;/em&gt; has &lt;em&gt;c&lt;/em&gt; odd cycles, then &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the vertex cover number of &lt;em&gt;G&lt;/em&gt;. In this paper we strengthen this result by showing that if &lt;em&gt;G&lt;/em&gt; and &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; have &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; numbers of induced odd cycles, respectively, then &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and we conjecture that for every graph &lt;em&gt;G&lt;/em&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We prove the conjecture for some families of graphs, namely, bipartite graphs, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-free regular graphs, perfect graphs, and for all graphs with &lt;span&gt;&lt;math&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;. It is shown that for every graph &lt;em&gt;G&lt;/em&gt;, &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; is the complement of &lt;em&gt;G&lt;/em&gt;, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; denote the largest and the smallest eigenvalues of the adjacency ","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114582"},"PeriodicalIF":0.7,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some interlacing sequences related to the Eulerian and derangement polynomials 一些与欧拉多项式和排列多项式有关的交错序列
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-28 DOI: 10.1016/j.disc.2025.114598
Xue Yan, Lily Li Liu
{"title":"Some interlacing sequences related to the Eulerian and derangement polynomials","authors":"Xue Yan,&nbsp;Lily Li Liu","doi":"10.1016/j.disc.2025.114598","DOIUrl":"10.1016/j.disc.2025.114598","url":null,"abstract":"<div><div>The Eulerian polynomials and derangement polynomials arise often in combinatorics, algebra and geometry. It is well known that the Eulerian polynomials and derangement polynomials form generalized Sturm sequences, respectively. In this paper, we give new sufficient conditions for the interlacing property of recurrence sequences of polynomials. As applications, we show some interesting interlacing sequences among the Eulerian polynomials, the derangement polynomials and those generalized polynomials for colored permutations.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114598"},"PeriodicalIF":0.7,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144147540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turán problems for star-path forests in hypergraphs Turán超图中星径森林的问题
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-27 DOI: 10.1016/j.disc.2025.114592
Junpeng Zhou , Xiying Yuan
{"title":"Turán problems for star-path forests in hypergraphs","authors":"Junpeng Zhou ,&nbsp;Xiying Yuan","doi":"10.1016/j.disc.2025.114592","DOIUrl":"10.1016/j.disc.2025.114592","url":null,"abstract":"<div><div>An <em>r</em>-uniform hypergraph (<em>r</em>-graph for short) is linear if any two edges intersect at most one vertex. Let <span><math><mi>F</mi></math></span> be a given family of <em>r</em>-graphs. An <em>r</em>-graph <em>H</em> is called <span><math><mi>F</mi></math></span>-free if <em>H</em> does not contain any member of <span><math><mi>F</mi></math></span> as a subgraph. The Turán number of <span><math><mi>F</mi></math></span> is the maximum number of edges in any <span><math><mi>F</mi></math></span>-free <em>r</em>-graph on <em>n</em> vertices, and the linear Turán number of <span><math><mi>F</mi></math></span> is defined as the Turán number of <span><math><mi>F</mi></math></span> in linear host hypergraphs. An <em>r</em>-uniform linear path <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> of length <em>ℓ</em> is an <em>r</em>-graph with edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> such that <span><math><mo>|</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span>, and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span> otherwise. Gyárfás et al. (2022) <span><span>[9]</span></span> obtained an upper bound for the linear Turán number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>. In this paper, an upper bound for the linear Turán number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is obtained, which generalizes the known result of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> to any <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. Furthermore, some results for the linear Turán number and Turán number of several linear star-path forests are obtained.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114592"},"PeriodicalIF":0.7,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144137779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forest cuts in sparse graphs 稀疏图中的森林砍伐
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-27 DOI: 10.1016/j.disc.2025.114594
Vsevolod Chernyshev , Johannes Rauch , Dieter Rautenbach
{"title":"Forest cuts in sparse graphs","authors":"Vsevolod Chernyshev ,&nbsp;Johannes Rauch ,&nbsp;Dieter Rautenbach","doi":"10.1016/j.disc.2025.114594","DOIUrl":"10.1016/j.disc.2025.114594","url":null,"abstract":"<div><div>We consider the conjecture that every graph <em>G</em> of order <em>n</em> with less than <span><math><mn>3</mn><mi>n</mi><mo>−</mo><mn>6</mn></math></span> edges has a vertex cut that induces a forest. Maximal planar graphs do not have such vertex cuts and show that the density condition would be best possible. We verify the conjecture for planar graphs and show that every graph <em>G</em> of order <em>n</em> with less than <span><math><mfrac><mrow><mn>11</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mfrac><mrow><mn>18</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span> edges has a vertex cut that induces a forest.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114594"},"PeriodicalIF":0.7,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144137780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rainbow numbers of paths in maximal bipartite planar graphs 极大二部平面图中路径的彩虹数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-26 DOI: 10.1016/j.disc.2025.114596
Lei Ren, Yongxin Lan, Changqing Xu
{"title":"The rainbow numbers of paths in maximal bipartite planar graphs","authors":"Lei Ren,&nbsp;Yongxin Lan,&nbsp;Changqing Xu","doi":"10.1016/j.disc.2025.114596","DOIUrl":"10.1016/j.disc.2025.114596","url":null,"abstract":"<div><div>Given two graphs <em>G</em> and <em>T</em>, the rainbow number of <em>T</em> in <em>G</em>, denoted by <span><math><mi>r</mi><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, is the minimum positive integer <em>t</em> such that, if <em>G</em> contains a copy of <em>T</em>, then every <em>t</em>-edge-coloring of <em>G</em> contains a rainbow copy of <em>T</em>. Given a family of graphs <span><math><mi>G</mi></math></span> and a graph <em>T</em>, if every graph in <span><math><mi>G</mi></math></span> contains a copy of <em>T</em>, then the rainbow number of <em>T</em> in <span><math><mi>G</mi></math></span>, denoted by <span><math><mi>r</mi><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span>, is defined as <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>}</mo></math></span>. Given a graph <em>T</em>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> denote the family of all maximal bipartite planar graphs on <em>n</em> vertices that contain a copy of <em>T</em>. In this paper, we study the rainbow numbers of paths in maximal bipartite planar graphs, we get the exact value of <span><math><mi>r</mi><mi>b</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mi>ℓ</mi></math></span> and <span><math><mi>ℓ</mi><mo>≠</mo><mn>8</mn></math></span>, and the lower bound of <span><math><mi>r</mi><mi>b</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114596"},"PeriodicalIF":0.7,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144134929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pattern avoidance in revised ascent sequences 修正上升序列的模式回避
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-05-26 DOI: 10.1016/j.disc.2025.114608
Robin D.P. Zhou
{"title":"Pattern avoidance in revised ascent sequences","authors":"Robin D.P. Zhou","doi":"10.1016/j.disc.2025.114608","DOIUrl":"10.1016/j.disc.2025.114608","url":null,"abstract":"<div><div>Inspired by the definition of modified ascent sequences, we introduce a new class of integer sequences called revised ascent sequences. These sequences are defined as Cayley permutations where each entry is a leftmost occurrence if and only if it serves as an ascent bottom. We construct a bijection between ascent sequences and revised ascent sequences by adapting the classic hat map, which transforms ascent sequences into modified ascent sequences. Additionally, we investigate revised ascent sequences that avoid a single pattern, leading to a wealth of enumerative results. Our main techniques include the use of bijections, generating trees, generating functions, and the kernel method.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114608"},"PeriodicalIF":0.7,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144134931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信