{"title":"The threshold for powers of tight Hamilton cycles in random hypergraphs","authors":"Yulin Chang , Jie Han , Lin Sun","doi":"10.1016/j.disc.2025.114599","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the occurrence of powers of tight Hamilton cycles in random hypergraphs. For every <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, we show that there exists a constant <span><math><mi>C</mi><mo>></mo><mn>0</mn></math></span> such that if <span><math><mi>p</mi><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mi>C</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup></math></span> then asymptotically almost surely the random hypergraph <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> contains the <em>k</em>th power of a tight Hamilton cycle. This improves on a result of Parczyk and Person, who proved the same result under the assumption <span><math><mi>p</mi><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></math></span> using a second moment argument.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114599"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the occurrence of powers of tight Hamilton cycles in random hypergraphs. For every and , we show that there exists a constant such that if then asymptotically almost surely the random hypergraph contains the kth power of a tight Hamilton cycle. This improves on a result of Parczyk and Person, who proved the same result under the assumption using a second moment argument.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.