Discrete Mathematics最新文献

筛选
英文 中文
Transversals in a collection of stars or generic trees 星形集合或一般树的截线
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-10 DOI: 10.1016/j.disc.2025.114836
Ethan Y.H. Li , Luyi Li , Ping Li
{"title":"Transversals in a collection of stars or generic trees","authors":"Ethan Y.H. Li ,&nbsp;Luyi Li ,&nbsp;Ping Li","doi":"10.1016/j.disc.2025.114836","DOIUrl":"10.1016/j.disc.2025.114836","url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a fixed collection of graphs on vertex set <em>V</em> and let <span><math><mi>G</mi></math></span> be a collection of elements in <span><math><mi>F</mi></math></span>. We investigate the transversal problem of finding the maximum value of <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span> when <span><math><mi>G</mi></math></span> contains no rainbow element in <span><math><mi>F</mi></math></span>. In this paper, we determine the exact values and characterize all the extremal cases of <span><math><mi>G</mi></math></span> when <span><math><mi>F</mi></math></span> is a collection of stars or generic trees with the same order, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114836"},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The nucleus of the Johnson graph J(N,D) 约翰逊图的核J(N,D)
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-10 DOI: 10.1016/j.disc.2025.114844
Kazumasa Nomura , Paul Terwilliger
{"title":"The nucleus of the Johnson graph J(N,D)","authors":"Kazumasa Nomura ,&nbsp;Paul Terwilliger","doi":"10.1016/j.disc.2025.114844","DOIUrl":"10.1016/j.disc.2025.114844","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper is about the nucleus of the Johnson graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The nucleus is described as follows. Let &lt;em&gt;X&lt;/em&gt; denote the vertex set of Γ. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Mat&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; denote the adjacency matrix of Γ. Let &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; denote the &lt;em&gt;Q&lt;/em&gt;-polynomial ordering of the primitive idempotents of &lt;em&gt;A&lt;/em&gt;. Fix &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The corresponding dual adjacency matrix &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is the diagonal matrix in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Mat&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; such that for &lt;span&gt;&lt;math&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; the &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-entry of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is equal to the &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-entry of &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. For &lt;span&gt;&lt;math&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; the diagonal matrix &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Mat&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the projection onto the &lt;em&gt;i&lt;/em&gt;th subconstituent of Γ with respect to &lt;em&gt;x&lt;/em&gt;. The matrices &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; are the primitive idempotents of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. The subalgebra &lt;em&gt;T&lt;/em&gt; of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Mat&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; generated by &lt;em&gt;A&lt;/em&gt;, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is called the subconstituent algebra of Γ with respect to &lt;em&gt;x&lt;/em&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; denote the standard module of Γ. For &lt;span&gt;&lt;math&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; define&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114844"},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the matching problem in random hypergraphs 随机超图中的匹配问题
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-10 DOI: 10.1016/j.disc.2025.114839
Peter Frankl , Jiaxi Nie , Jian Wang
{"title":"On the matching problem in random hypergraphs","authors":"Peter Frankl ,&nbsp;Jiaxi Nie ,&nbsp;Jian Wang","doi":"10.1016/j.disc.2025.114839","DOIUrl":"10.1016/j.disc.2025.114839","url":null,"abstract":"<div><div>We study a variant of the Erdős Matching Problem in random hypergraphs. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denote the Erdős-Rényi random <em>k</em>-uniform hypergraph on <em>n</em> vertices where each possible edge is included with probability <em>p</em>. We show that when <span><math><mi>n</mi><mo>≫</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>s</mi></math></span> and <em>p</em> is not too small, with high probability, the maximum number of edges in a sub-hypergraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> with matching number <em>s</em> is obtained by the trivial sub-hypergraphs, i.e. the sub-hypergraph consisting of all edges containing at least one vertex in a fixed set of <em>s</em> vertices.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114839"},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constant congestion linkages in polynomially strong digraphs in polynomial time 多项式时间多项式强有向图中的常拥塞连杆
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-09 DOI: 10.1016/j.disc.2025.114808
Raul Lopes , Ignasi Sau
{"title":"Constant congestion linkages in polynomially strong digraphs in polynomial time","authors":"Raul Lopes ,&nbsp;Ignasi Sau","doi":"10.1016/j.disc.2025.114808","DOIUrl":"10.1016/j.disc.2025.114808","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Given positive integers &lt;em&gt;k&lt;/em&gt; and &lt;em&gt;c&lt;/em&gt;, we say that a digraph &lt;em&gt;D&lt;/em&gt; is &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-linked&lt;/em&gt; if for every pair of ordered sets &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; of vertices of &lt;em&gt;D&lt;/em&gt;, there are paths &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; such that for &lt;span&gt;&lt;math&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; each &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is a path from &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; to &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and every vertex of &lt;em&gt;D&lt;/em&gt; appears in at most &lt;em&gt;c&lt;/em&gt; of those paths. A classical result by Thomassen [Combinatorica, 1991] states that, for every fixed &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, there is no integer &lt;em&gt;p&lt;/em&gt; such that every &lt;em&gt;p&lt;/em&gt;-strong digraph is &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-linked.&lt;/div&gt;&lt;div&gt;Edwards et al. [ESA, 2017] showed that every digraph &lt;em&gt;D&lt;/em&gt; with directed treewidth at least some function &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; contains a large bramble of congestion 2. Then, they showed that every &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;36&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-strong digraph containing a bramble of congestion 2 and size roughly &lt;span&gt;&lt;math&gt;&lt;mn&gt;188&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-linked. Since the directed treewidth of a digraph has to be at least its strong connectivity, this implies that there is a function &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; such that every &lt;span&gt;&lt;math&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-strong digraph is &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-linked. The result by Edwards et al. was improved by Campos et al. [ESA, 2023], who showed that any &lt;em&gt;k&lt;/em&gt;-strong digraph containing a bramble of size at least &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and congesti","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114808"},"PeriodicalIF":0.7,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145265225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying codes in graphs of given maximum degree: Characterizing trees 在给定最大度的图中识别代码:表征树
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-09 DOI: 10.1016/j.disc.2025.114826
Dipayan Chakraborty , Florent Foucaud , Michael A. Henning , Tuomo Lehtilä
{"title":"Identifying codes in graphs of given maximum degree: Characterizing trees","authors":"Dipayan Chakraborty ,&nbsp;Florent Foucaud ,&nbsp;Michael A. Henning ,&nbsp;Tuomo Lehtilä","doi":"10.1016/j.disc.2025.114826","DOIUrl":"10.1016/j.disc.2025.114826","url":null,"abstract":"<div><div>An <em>identifying code</em> of a closed-twin-free graph <em>G</em> is a dominating set <em>S</em> of vertices of <em>G</em> such that any two vertices in <em>G</em> have a distinct intersection between their closed neighborhoods and <em>S</em>. It was conjectured that there exists an absolute constant <em>c</em> such that for every connected graph <em>G</em> of order <em>n</em> and maximum degree Δ, the graph <em>G</em> admits an identifying code of size at most <span><math><mo>(</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>Δ</mi></mrow></mfrac><mo>)</mo><mi>n</mi><mo>+</mo><mi>c</mi></math></span>. We provide significant support for this conjecture by exactly characterizing every tree requiring a positive constant <em>c</em> together with the exact value of the constant. Hence, proving the conjecture for trees. For <span><math><mi>Δ</mi><mo>=</mo><mn>2</mn></math></span> (the graph is a path or a cycle), it is long known that <span><math><mi>c</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span> suffices. For trees, for each <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span>, we show that <span><math><mi>c</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>Δ</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> suffices and that <em>c</em> is required to have a positive value only for a finite number of trees. In particular, for <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span>, there are 12 trees with a positive constant <em>c</em> and, for each <span><math><mi>Δ</mi><mo>≥</mo><mn>4</mn></math></span>, the only tree with positive constant <em>c</em> is the Δ-star. Our proof is based on induction and utilizes recent results from Foucaud and Lehtilä (2022) <span><span>[17]</span></span>. We remark that there are infinitely many trees for which the bound is tight when <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span>; for every <span><math><mi>Δ</mi><mo>≥</mo><mn>4</mn></math></span>, we construct an infinite family of trees of order <em>n</em> with identification number very close to the bound, namely <span><math><mrow><mo>(</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow><mrow><mi>Δ</mi><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfrac><mo>)</mo></mrow><mi>n</mi><mo>&gt;</mo><mo>(</mo><mfrac><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>Δ</mi></mrow></mfrac><mo>)</mo><mi>n</mi><mo>−</mo><mfrac><mrow><mi>n</mi></mrow><mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span>. Furthermore, we also give a new tight upper bound for identification number on trees by showing that the sum of the domination and identification numbers of any tree <em>T</em> is at most its number of vertices.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114826"},"PeriodicalIF":0.7,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145265228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral extremal results on edge blow-up of graphs 图边放大的谱极值结果
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-09 DOI: 10.1016/j.disc.2025.114835
Longfei Fang , Huiqiu Lin
{"title":"Spectral extremal results on edge blow-up of graphs","authors":"Longfei Fang ,&nbsp;Huiqiu Lin","doi":"10.1016/j.disc.2025.114835","DOIUrl":"10.1016/j.disc.2025.114835","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ex&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;spex&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the maximum size and the maximum spectral radius of an &lt;em&gt;F&lt;/em&gt;-free graph of order &lt;em&gt;n&lt;/em&gt;, respectively. The value &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;spex&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is called the spectral extremal value of &lt;em&gt;F&lt;/em&gt;. Nikiforov (2009) &lt;span&gt;&lt;span&gt;[24]&lt;/span&gt;&lt;/span&gt; gave the spectral Stability Lemma, which implies that for every &lt;span&gt;&lt;math&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, sufficiently large &lt;em&gt;n&lt;/em&gt; and a non-bipartite graph &lt;em&gt;H&lt;/em&gt; with chromatic number &lt;span&gt;&lt;math&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, the extremal graph for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;spex&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; can be obtained from the Turán graph &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; by adding and deleting at most &lt;span&gt;&lt;math&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; edges. It is still a challenging problem to determine the exact spectral extremal values of many non-bipartite graphs. Given a graph &lt;em&gt;F&lt;/em&gt; and an integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, the edge blow-up of &lt;em&gt;F&lt;/em&gt;, denoted by &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, is the graph obtained from replacing each edge in &lt;em&gt;F&lt;/em&gt; by a &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; where the new vertices of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are all distinct. In this paper, we determine the exact spectral extremal values of the edge blow-up of all non-bipartite graphs and provide the asymptotic spectral extremal values of the edge blow-up of all bipartite graphs for sufficiently large &lt;em&gt;n&lt;/em&gt;, which can be seen as a spectral version of the theorem on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ex&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; given by Yuan (2022) &lt;span&gt;&lt;span&gt;[34]&lt;/span&gt;&lt;/span&gt;. As applications, on the one hand, we generalize several previous results on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;spex&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for &lt;em&gt;F&lt;/em&gt; being a matching and a star. On the other hand, we obtain the exact values of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;spex&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114835"},"PeriodicalIF":0.7,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145265223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strictly critical snarks with girth or cyclic connectivity equal to 6 周长或循环连通性等于6的严格临界裂缝
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-09 DOI: 10.1016/j.disc.2025.114827
Ján Mazák , Jozef Rajník , Martin Škoviera
{"title":"Strictly critical snarks with girth or cyclic connectivity equal to 6","authors":"Ján Mazák ,&nbsp;Jozef Rajník ,&nbsp;Martin Škoviera","doi":"10.1016/j.disc.2025.114827","DOIUrl":"10.1016/j.disc.2025.114827","url":null,"abstract":"<div><div>A snark – connected cubic graph with chromatic index 4 – is critical if the graph resulting from the removal of any pair of distinct adjacent vertices is 3-edge-colourable; it is bicritical if the same is true for any pair of distinct vertices. A snark is strictly critical if it is critical but not bicritical. Very little is known about strictly critical snarks. Computational evidence suggests that strictly critical snarks constitute a tiny minority of all critical snarks. Strictly critical snarks of order <em>n</em> exist if and only if <em>n</em> is even and at least 32, and for each such order there is at least one strictly critical snark with cyclic connectivity 4. A sparse infinite family of cyclically 5-connected strictly critical snarks is also known, but those with cyclic connectivity greater than 5 have not been discovered so far. In this paper we fill the gap by constructing cyclically 6-connected strictly critical snarks of each even order <span><math><mi>n</mi><mo>≥</mo><mn>342</mn></math></span>. In addition, we construct cyclically 5-connected strictly critical snarks of girth 6 for every even <span><math><mi>n</mi><mo>≥</mo><mn>66</mn></math></span> with <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>8</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114827"},"PeriodicalIF":0.7,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145265226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On arborescence packing augmentation in hypergraphs 超图中树杈填充增广
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-09 DOI: 10.1016/j.disc.2025.114837
Pierre Hoppenot, Zoltán Szigeti
{"title":"On arborescence packing augmentation in hypergraphs","authors":"Pierre Hoppenot,&nbsp;Zoltán Szigeti","doi":"10.1016/j.disc.2025.114837","DOIUrl":"10.1016/j.disc.2025.114837","url":null,"abstract":"<div><div>We deepen the link between two classic areas of combinatorial optimization: augmentation and packing arborescences. We consider the following type of questions: What is the minimum number of arcs to be added to a digraph so that in the resulting digraph there exists some special kind of packing of arborescences? We answer this question for two problems: <em>h</em>-regular <span>M</span>-independent-rooted <span><math><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>-bounded <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of mixed hyperarborescences and <em>h</em>-regular <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span>-bordered <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of <em>k</em> hyperbranchings. We also solve the undirected counterpart of the latter, that is the augmentation problem for <em>h</em>-regular <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span>-bordered <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of <em>k</em> rooted hyperforests. Our results provide a common generalization of a great number of previous results.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114837"},"PeriodicalIF":0.7,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The nonrepetitive coloring of grids 网格的非重复着色
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-09 DOI: 10.1016/j.disc.2025.114828
Tianyi Tao
{"title":"The nonrepetitive coloring of grids","authors":"Tianyi Tao","doi":"10.1016/j.disc.2025.114828","DOIUrl":"10.1016/j.disc.2025.114828","url":null,"abstract":"<div><div>For a graph <em>G</em>, a vertex coloring <em>f</em> is called nonrepetitive if for all <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> and all <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>〉</mo></math></span> (path of 2<em>k</em> vertices) in <em>G</em>, there must be some <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> such that <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>≠</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></math></span>.</div><div>We use <span><math><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to denote the minimum number of colors required for <em>G</em> to be nonrepetitively colored.</div><div>In 1906, Thue proved that <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>3</mn></math></span> for all <em>n</em>. In this paper, we focus on grids, which are the Cartesian products of paths. We prove that <span><math><mn>5</mn><mo>≤</mo><mi>π</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>□</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>12</mn></math></span> for sufficiently large <em>n</em>, where the previous best lower bound was 4 and upper bound was 16. Moreover, we also discuss nonrepetitive coloring of the Cartesian product of complete graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114828"},"PeriodicalIF":0.7,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145265227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the zero-free region for the chromatic polynomial of graphs with maximum degree Δ and girth g 周长为g的最大度Δ图的色多项式的无零区域
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-09 DOI: 10.1016/j.disc.2025.114825
Paula M.S. Fialho , Emanuel Juliano , Aldo Procacci
{"title":"On the zero-free region for the chromatic polynomial of graphs with maximum degree Δ and girth g","authors":"Paula M.S. Fialho ,&nbsp;Emanuel Juliano ,&nbsp;Aldo Procacci","doi":"10.1016/j.disc.2025.114825","DOIUrl":"10.1016/j.disc.2025.114825","url":null,"abstract":"<div><div>The purpose of the present paper is to provide, for all pairs of integers <span><math><mo>(</mo><mi>Δ</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>, a positive number <span><math><mi>C</mi><mo>(</mo><mi>Δ</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> such that chromatic polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> of a graph <span><math><mi>G</mi></math></span> with maximum degree Δ and finite girth <em>g</em> is free of zero if <span><math><mo>|</mo><mi>q</mi><mo>|</mo><mo>≥</mo><mi>C</mi><mo>(</mo><mi>Δ</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>. Our bounds enlarge the zero-free region in the complex plane of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> in comparison to all previous bounds. In particular, for small values of Δ our estimates yield an expressive improvement on the bounds recently obtained by Jenssen, Patel and Regts in [J. Comb. Theor. B, 169 (2024)], while they coincide with their estimates when <span><math><mi>Δ</mi><mo>→</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114825"},"PeriodicalIF":0.7,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145268588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信