{"title":"The oriented diameter of a bridgeless graph with the given path Pk","authors":"Ruijuan Li, Shufeng Chen","doi":"10.1016/j.disc.2025.114509","DOIUrl":"10.1016/j.disc.2025.114509","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a bridgeless undirected graph. The oriented diameter of <em>G</em> is the minimum diameter of any strongly connected orientation of <em>G</em>. Dankelmann, Guo and Surmacs [J. Graph Theory, 88 (2018), 5-17] showed that every bridgeless graph <em>G</em> of order <em>n</em> has an oriented diameter at most <span><math><mi>n</mi><mo>−</mo><mi>Δ</mi><mo>+</mo><mn>3</mn></math></span>, where Δ is the maximum degree of <em>G</em>. By defining <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>⋃</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msub><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>∖</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every subgraph <em>H</em> of <em>G</em>, they proved that for an edge <em>e</em>, <em>G</em> has an orientation of diameter at most <span><math><mi>n</mi><mo>−</mo><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>e</mi><mo>)</mo><mo>|</mo><mo>+</mo><mn>5</mn></math></span>. In this paper, we generalize the above-mentioned results by substituting a vertex or an edge <em>e</em> by a given path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <em>G</em>. We first give an algorithm to cover <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> with some specific cycles, and then prove the upper bound <span><math><mi>n</mi><mo>−</mo><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>|</mo><mo>+</mo><mn>2</mn><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>3</mn></math></span> on the oriented diameter. We provide examples to show that our bound is sharp.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114509"},"PeriodicalIF":0.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth","authors":"Manouchehr Zaker","doi":"10.1016/j.disc.2025.114502","DOIUrl":"10.1016/j.disc.2025.114502","url":null,"abstract":"<div><div>The Grundy (or First-Fit) chromatic number of a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, denoted by <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (or <span><math><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>FF</mi></mrow></msub></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>), is the maximum number of colors used by a First-Fit (greedy) coloring of <em>G</em>. The determining <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is <span>NP</span>-complete for various classes of graphs. Also there exists a constant <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> such that the Grundy number is hard to approximate within the ratio <em>c</em>. We first obtain an <span><math><mi>O</mi><mo>(</mo><mi>V</mi><mi>E</mi><mo>)</mo></math></span> algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph <em>G</em> with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to <em>G</em>. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></msub><mo></mo><mspace></mspace><msub><mrow><mi>max</mi></mrow><mrow><mi>v</mi><mo>∈</mo><mi>N</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>:</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mo></mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span>. We obtain an <span><math><mi>O</mi><mo>(</mo><mi>V</mi><mi>E</mi><mo>)</mo></math></span> algorithm to determine <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for graphs <em>G</em> whose girth <em>g</em> is at least <span><math><mn>2</mn><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. This algorithm provides a polynomial time approximation algorithm within ratio <span><math><mi>min</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mn>2</mn><msub><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo><mo>}</mo></math></span> for <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of general graphs <em>G</em> with girth <em>g</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114502"},"PeriodicalIF":0.7,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dense, irregular, yet always-graphic 3-uniform hypergraph degree sequences","authors":"Runze Li , István Miklós","doi":"10.1016/j.disc.2025.114498","DOIUrl":"10.1016/j.disc.2025.114498","url":null,"abstract":"<div><div>A 3-uniform hypergraph is a generalization of a simple graph where each hyperedge is a subset of exactly three vertices. The degree of a vertex in a hypergraph is the number of hyperedges incident with it. The degree sequence of a hypergraph is the sequence of the degrees of its vertices. The degree sequence problem for 3-uniform hypergraphs asks whether a 3-uniform hypergraph with a given degree sequence exists. Such a hypergraph is called a realization. Recently, Deza et al. proved that this problem is NP-complete. Although some special cases are simple, polynomial-time algorithms are only known for highly restricted degree sequences. The main result of our research is the following: if all degrees in a sequence <em>D</em> of length <em>n</em> are between <span><math><mfrac><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>63</mn></mrow></mfrac><mo>+</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mfrac><mrow><mn>5</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>63</mn></mrow></mfrac><mo>−</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, the number of vertices is at least 45, and the degree sum is divisible by 3, then <em>D</em> has a 3-uniform hypergraph realization. Our proof is constructive, providing a polynomial-time algorithm for constructing such a hypergraph. To our knowledge, this is the first polynomial-time algorithm to construct a 3-uniform hypergraph realization of a highly irregular and dense degree sequence.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114498"},"PeriodicalIF":0.7,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilias S. Kotsireas , Christoph Koutschan , Arne Winterhof
{"title":"Quaternary Legendre pairs II","authors":"Ilias S. Kotsireas , Christoph Koutschan , Arne Winterhof","doi":"10.1016/j.disc.2025.114501","DOIUrl":"10.1016/j.disc.2025.114501","url":null,"abstract":"<div><div>Quaternary Legendre pairs are pertinent to the construction of quaternary Hadamard matrices and have many applications, for example in coding theory and communications.</div><div>In contrast to binary Legendre pairs, quaternary ones can exist for even length <em>ℓ</em> as well. It is conjectured that there is a quaternary Legendre pair for any even <em>ℓ</em>. The smallest open case until now had been <span><math><mi>ℓ</mi><mo>=</mo><mn>28</mn></math></span>, and <span><math><mi>ℓ</mi><mo>=</mo><mn>38</mn></math></span> was the only length <em>ℓ</em> with <span><math><mn>28</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mn>60</mn></math></span> resolved before. Here we provide constructions for <span><math><mi>ℓ</mi><mo>=</mo><mn>28</mn><mo>,</mo><mn>30</mn><mo>,</mo><mn>32</mn></math></span>, and 34. In parallel and independently, Jedwab and Pender found a construction of quaternary Legendre pairs of length <span><math><mi>ℓ</mi><mo>=</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> for any prime power <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn></math></span>, which in particular covers <span><math><mi>ℓ</mi><mo>=</mo><mn>30</mn></math></span>, 36, and 40, so that now <span><math><mi>ℓ</mi><mo>=</mo><mn>42</mn></math></span> is the smallest unresolved case.</div><div>The main new idea of this paper is a way to separate the search for the subsequences along even and odd indices which substantially reduces the complexity of the search algorithm.</div><div>In addition, we use Galois theory for cyclotomic fields to derive conditions which improve the PSD test.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114501"},"PeriodicalIF":0.7,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved upper bounds for six-valent integer distance graph coloring periods","authors":"Jonathan Cervantes , Mike Krebs","doi":"10.1016/j.disc.2025.114496","DOIUrl":"10.1016/j.disc.2025.114496","url":null,"abstract":"<div><div>Given a set <em>S</em> of positive integers, the integer distance graph for <em>S</em> has the set of integers as its vertex set, where two vertices are adjacent if and only if the absolute value of their difference lies in <em>S</em>. In 2002, Zhu completely determined the chromatic number of integer distance graphs when <em>S</em> has cardinality 3, in which case the graphs have degree 6. Integer distance graphs can be defined equivalently as Cayley graphs on the group of integers under addition. In 1990 Eggleton, Erdős, and Skilton proved that if an integer distance graph of finite degree admits a proper <em>k</em>-coloring, then it admits a periodic proper <em>k</em>-coloring. They obtained an upper bound on the minimum such period but point out that it is quite large and very likely can be reduced considerably. In previous work, the authors of the present paper develop a general matrix method to approach the problem of finding chromatic numbers of abelian Cayley graphs. In this article we show that Zhu's theorem can be recovered as a special case of these results, and that in so doing we significantly improve the upper bounds on the periods of optimal colorings of these graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114496"},"PeriodicalIF":0.7,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143704715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractional colorings of partial t-trees with no large clique","authors":"Peter Bradshaw","doi":"10.1016/j.disc.2025.114495","DOIUrl":"10.1016/j.disc.2025.114495","url":null,"abstract":"<div><div>Dvořák and Kawarabayashi <span><span>[2]</span></span> asked, what is the largest chromatic number attainable by a graph of treewidth <em>t</em> with no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> subgraph? In this paper, we consider the fractional version of this question. We prove that if <em>G</em> has treewidth <em>t</em> and clique number <span><math><mn>2</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>t</mi></math></span>, then <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>t</mi><mo>+</mo><mfrac><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span>, and we show that this bound is tight for <span><math><mi>ω</mi><mo>=</mo><mi>t</mi></math></span>. We also show that for each value <span><math><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, there exists a graph <em>G</em> of a large treewidth <em>t</em> and clique number <span><math><mi>ω</mi><mo>=</mo><mo>⌊</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>c</mi><mo>)</mo><mi>t</mi><mo>⌋</mo></math></span> satisfying <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>log</mi><mo></mo><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>c</mi><mo>)</mo><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, which is approximately equal to the upper bound for small values <em>c</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114495"},"PeriodicalIF":0.7,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tyshkevich's graph decomposition and the distinguishing numbers of unigraphs","authors":"Christine T. Cheng","doi":"10.1016/j.disc.2025.114492","DOIUrl":"10.1016/j.disc.2025.114492","url":null,"abstract":"<div><div>A <em>c</em>-labeling <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>c</mi><mo>}</mo></math></span> of graph <em>G</em> is <em>distinguishing</em> if, for every non-trivial automorphism <em>π</em> of <em>G</em>, there is some vertex <em>v</em> so that <span><math><mi>ϕ</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≠</mo><mi>ϕ</mi><mo>(</mo><mi>π</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>)</mo></math></span>. The <em>distinguishing number of G</em>, <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest <em>c</em> such that <em>G</em> has a distinguishing <em>c</em>-labeling.</div><div>We consider a compact version of Tyshkevich's graph decomposition theorem where trivial components are maximally combined to form a complete graph or a graph of isolated vertices. Suppose the compact canonical decomposition of <em>G</em> is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∘</mo><mo>⋯</mo><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We prove that <em>ϕ</em> is a distinguishing labeling of <em>G</em> if and only if <em>ϕ</em> is a distinguishing labeling of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> when restricted to <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></math></span>. Thus, <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>D</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>,</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. We then present an algorithm that computes the distinguishing number of a unigraph in linear time.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114492"},"PeriodicalIF":0.7,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The king degree and the second out-degree of tournaments","authors":"Aya Alhussein , Ayman El Zein","doi":"10.1016/j.disc.2025.114497","DOIUrl":"10.1016/j.disc.2025.114497","url":null,"abstract":"<div><div>In a digraph, the second out-degree of a vertex <em>x</em>, denoted by <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, is the number of vertices <em>y</em> such that <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span>, where <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is the length of the shortest <em>xy</em>-directed path, if it exists. It is obvious that the sum of the first out-degrees of the vertices in a digraph is nothing but the number of its arcs. Unlike the first out-degree, the summation of the second out-degrees of the vertices in a digraph is not constant with respect to the number of vertices and arcs. In this paper, we characterize, as a function of some integer <em>n</em>, the values that can be the summation of the second out-degrees of the vertices in a tournament of order <em>n</em>. Throughout the paper, we use the new concept of king degree in order to settle the problem. The king degree of a vertex <em>x</em> is the number of vertices that can be reached from <em>x</em> by a directed path of length at most 2. Several open problems are introduced in the last section of the paper.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114497"},"PeriodicalIF":0.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combinatorics on words and generating Dirichlet series of automatic sequences","authors":"Jean-Paul Allouche , Jeffrey Shallit , Manon Stipulanti","doi":"10.1016/j.disc.2025.114487","DOIUrl":"10.1016/j.disc.2025.114487","url":null,"abstract":"<div><div>Generating series are crucial in enumerative combinatorics, analytic combinatorics, and combinatorics on words. Though it might seem at first view that generating Dirichlet series are less used in these fields than ordinary and exponential generating series, there are many notable papers where they play a fundamental role, as can be seen in particular in the work of Flajolet and several of his co-authors. In this paper, we study Dirichlet series of integers with missing digits or blocks of digits in some integer base <em>b</em>; i.e., where the summation ranges over the integers whose expansions form some language strictly included in the set of all words over the alphabet <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>b</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> that do not begin with a 0. We show how to unify and extend results proved by Nathanson in 2021 and by Köhler and Spilker in 2009. En route, we encounter several sequences from Sloane's On-Line Encyclopedia of Integer Sequences, as well as some famous <em>b</em>-automatic sequences or <em>b</em>-regular sequences. We also consider a specific sequence that is not <em>b</em>-regular.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114487"},"PeriodicalIF":0.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sign-twisted generating functions of the odd length for Weyl groups of type D","authors":"Haihang Gu , Houyi Yu","doi":"10.1016/j.disc.2025.114494","DOIUrl":"10.1016/j.disc.2025.114494","url":null,"abstract":"<div><div>The odd length in Weyl groups is a new statistic analogous to the classical Coxeter length, and features combinatorial and parity conditions. We establish explicit closed product formulas for the sign-twisted generating functions of the odd length for parabolic quotients of Weyl groups of type <em>D</em>. As a consequence, we verify three conjectures of Brenti and Carnevale on evaluating closed forms for these generating functions. We then give an equivalent condition for the sign-twisted generating functions to be expressible as products of cyclotomic polynomials, settling a conjecture of Stembridge.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114494"},"PeriodicalIF":0.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}