Discrete Mathematics最新文献

筛选
英文 中文
Ideally connected cographs and chordal graphs 理想连通图和弦图
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-10-01 DOI: 10.1016/j.disc.2025.114819
Richter Jordaan
{"title":"Ideally connected cographs and chordal graphs","authors":"Richter Jordaan","doi":"10.1016/j.disc.2025.114819","DOIUrl":"10.1016/j.disc.2025.114819","url":null,"abstract":"<div><div>For distinct vertices <span><math><mi>u</mi><mo>,</mo><mi>v</mi></math></span> in a graph <em>G</em>, let <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> denote the maximum number of internally disjoint <em>u</em>-<em>v</em> paths in <em>G</em>. Then, <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mtext>deg</mtext></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><msub><mrow><mtext>deg</mtext></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>}</mo></math></span>. If equality is attained for every pair of vertices in <em>G</em>, then <em>G</em> is called <em>ideally connected</em>. In this paper, we characterize the ideally connected graphs in two well-known graph classes: the cographs and the chordal graphs. We show that the ideally connected cographs are precisely the <span><math><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free cographs, and the ideally connected chordal graphs are precisely the threshold graphs, the graphs that can be constructed from the single-vertex graph by repeatedly adding either an isolated vertex or a dominating vertex.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114819"},"PeriodicalIF":0.7,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145219190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divisible design graphs with selfloops 可分割的设计图形与自floops
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-30 DOI: 10.1016/j.disc.2025.114824
Anwita Bhowmik , Bart De Bruyn , Sergey Goryainov
{"title":"Divisible design graphs with selfloops","authors":"Anwita Bhowmik ,&nbsp;Bart De Bruyn ,&nbsp;Sergey Goryainov","doi":"10.1016/j.disc.2025.114824","DOIUrl":"10.1016/j.disc.2025.114824","url":null,"abstract":"<div><div>We develop a basic theory for divisible design graphs with possible selfloops (LDDG's), and describe two infinite families of such graphs, some members of which are also classical examples of divisible design graphs without loops (DDG's). Among the described theoretical results is a discussion of the spectrum, a classification of all examples satisfying certain parameter restrictions or having at most three eigenvalues, a discussion of the structure of the improper and the disconnected examples, and a procedure called dual Seidel switching which allows to construct new examples of LDDG's from others.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114824"},"PeriodicalIF":0.7,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the strong Bordeaux Conjecture 关于强烈的波尔多猜想
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-30 DOI: 10.1016/j.disc.2025.114818
Xiangwen Li , Lin Niu, Fangyu Tian
{"title":"On the strong Bordeaux Conjecture","authors":"Xiangwen Li ,&nbsp;Lin Niu,&nbsp;Fangyu Tian","doi":"10.1016/j.disc.2025.114818","DOIUrl":"10.1016/j.disc.2025.114818","url":null,"abstract":"<div><div>Steinberg Conjecture (1976) states that every planar graph without 4-cycles and 5-cycles is 3-colorable, and the strong Bordeaux Conjecture (2003) says that every planar graph without 5-cycles and adjacent 3-cycles is 3-colorable. In 2017, such both conjectures are disproved by Cohen–Addad et al. In the view of improper coloring, one naturally asks whether every planar graph without 4-cycles and 5-cycles is <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>-colorable and whether every planar graph without 5-cycles and adjacent 3-cycles is <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>-colorable. In this paper, we prove that every planar graph without 5-cycles and adjacent 3-cycles is <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>-colorable, which improves the early results of Li et al. (2020) <span><span>[11]</span></span>, Chen et al. (2016) <span><span>[3]</span></span> and Liu et al. (2015) <span><span>[12]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114818"},"PeriodicalIF":0.7,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On minimally t-tough graphs with t ≤ 1 在t ≤ 的最小t坚韧图上
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-26 DOI: 10.1016/j.disc.2025.114814
Shiyu Cao, Jing Chen, Wei Zheng
{"title":"On minimally t-tough graphs with t ≤ 1","authors":"Shiyu Cao,&nbsp;Jing Chen,&nbsp;Wei Zheng","doi":"10.1016/j.disc.2025.114814","DOIUrl":"10.1016/j.disc.2025.114814","url":null,"abstract":"<div><div>Let <em>t</em> be a positive real number. If the toughness of <em>G</em> is <em>t</em> and the deletion of any edge from <em>G</em> decreases its toughness, then <em>G</em> is a minimally <em>t</em>-tough graph. The generalized Kriesell's conjecture states that there exists a vertex of degree <span><math><mo>⌈</mo><mn>2</mn><mi>t</mi><mo>⌉</mo></math></span> in each minimally <em>t</em>-tough graph. The conjecture is recently disproved in general, but in this paper we prove it for some families of graphs. In this paper, we mainly discuss minimally <em>t</em>-tough and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>r</mi></mrow></msub></math></span>-free graphs with <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span> and the structures of minimally <em>t</em>-tough graphs with <span><math><mi>t</mi><mo>≤</mo><mn>1</mn></math></span>. We prove that the conjecture stated above holds for minimally <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>-tough and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub></math></span>-free graphs, and minimally <em>t</em>-tough graphs with a simplicial vertex (a vertex where all its neighbors are also adjacent to each other) and <span><math><mi>t</mi><mo>≤</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114814"},"PeriodicalIF":0.7,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridge indices of spatial graphs and diagram colorings 空间图形的桥指数与图解着色
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-25 DOI: 10.1016/j.disc.2025.114813
Sarah Blackwell , Puttipong Pongtanapaisan , Hanh Vo
{"title":"Bridge indices of spatial graphs and diagram colorings","authors":"Sarah Blackwell ,&nbsp;Puttipong Pongtanapaisan ,&nbsp;Hanh Vo","doi":"10.1016/j.disc.2025.114813","DOIUrl":"10.1016/j.disc.2025.114813","url":null,"abstract":"<div><div>We extend the Wirtinger number of links, an invariant originally defined by Blair, Kjuchukova, Velazquez, and Villanueva in terms of extending initial colorings of some strands of a diagram to the entire diagram, to spatial graphs. We prove that the Wirtinger number equals the bridge index of spatial graphs, and we implement an algorithm in Python which gives a more efficient way to estimate upper bounds of bridge indices. Combined with lower bounds from diagram colorings by elements from certain algebraic structures and clasping techniques, we obtain exact bridge indices for a large family of almost unknotted spatial graphs. We also show that for every possible negative Euler characteristic, there exist almost unknotted graphs of arbitrarily large bridge index.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114813"},"PeriodicalIF":0.7,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing symmetric digraphs by proper arc-colourings of type I 用I型适当的圆弧着色区分对称有向图
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-25 DOI: 10.1016/j.disc.2025.114816
Rafał Kalinowski, Monika Pilśniak, Magdalena Prorok
{"title":"Distinguishing symmetric digraphs by proper arc-colourings of type I","authors":"Rafał Kalinowski,&nbsp;Monika Pilśniak,&nbsp;Magdalena Prorok","doi":"10.1016/j.disc.2025.114816","DOIUrl":"10.1016/j.disc.2025.114816","url":null,"abstract":"<div><div>A symmetric digraph <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>↔</mo></mrow></mover></math></span> is obtained from a simple graph <em>G</em> by replacing each edge <em>uv</em> with a pair of opposite arcs <span><math><mover><mrow><mi>u</mi><mi>v</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>, <span><math><mover><mrow><mi>v</mi><mi>u</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>. An arc-colouring <em>c</em> of a digraph <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>↔</mo></mrow></mover></math></span> is distinguishing if the only automorphism of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>↔</mo></mrow></mover></math></span> preserving the colouring <em>c</em> is the identity. Behzad introduced the proper arc-colouring of type I as an arc-colouring such that any two consecutive arcs <span><math><mover><mrow><mi>u</mi><mi>v</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span>, <span><math><mover><mrow><mi>v</mi><mi>w</mi></mrow><mrow><mo>→</mo></mrow></mover></math></span> have distinct colours. We establish an optimal upper bound <span><math><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msqrt><mo>⌉</mo></math></span> for the least number of colours in a distinguishing proper colouring of type I of a connected symmetric digraph <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>↔</mo></mrow></mover></math></span>. Furthermore, we prove that the same upper bound <span><math><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msqrt><mo>⌉</mo></math></span> is optimal for another type of proper colouring of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>↔</mo></mrow></mover></math></span>, when only monochromatic 2-paths are forbidden.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114816"},"PeriodicalIF":0.7,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The connection between the chromatic numbers of a hypergraph and its 1-intersection graph 超图的色数与它的1交图之间的联系
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-25 DOI: 10.1016/j.disc.2025.114810
Zoltán L. Blázsik , Nathan W. Lemons
{"title":"The connection between the chromatic numbers of a hypergraph and its 1-intersection graph","authors":"Zoltán L. Blázsik ,&nbsp;Nathan W. Lemons","doi":"10.1016/j.disc.2025.114810","DOIUrl":"10.1016/j.disc.2025.114810","url":null,"abstract":"<div><div>A well known problem from an excellent book of Lovász states that any hypergraph with the property that no pair of hyperedges intersect in exactly one vertex can be properly 2-colored. Motivated by this as well as recent works of Keszegh and of Gyárfás et al. we study the 1-intersection graph of a hypergraph. The 1-intersection graph encodes those pairs of hyperedges in a hypergraph that intersect in exactly one vertex. We prove for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>}</mo></math></span> that all hypergraphs whose 1-intersection graph is <em>k</em>-partite can be properly <em>k</em>-colored.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114810"},"PeriodicalIF":0.7,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The flip graph on planar layouts of a planar tanglegram is almost a hypercube 平面缠结图平面布局上的翻转图几乎是一个超立方体
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-25 DOI: 10.1016/j.disc.2025.114815
Kevin Liu
{"title":"The flip graph on planar layouts of a planar tanglegram is almost a hypercube","authors":"Kevin Liu","doi":"10.1016/j.disc.2025.114815","DOIUrl":"10.1016/j.disc.2025.114815","url":null,"abstract":"<div><div>Given a planar layout of a planar tanglegram, it is known that all other planar layouts can be obtained using paired flips at leaf-matched pairs of vertices. Consequently, for any planar tanglegram <span><math><mi>T</mi></math></span>, the paired flip operation generates a connected flip graph <span><math><mi>G</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> on the set of planar layouts of <span><math><mi>T</mi></math></span>. We introduce a special subset of leaf-matched pairs that we call <em>essential</em> and show that restricting to paired flips at these pairs generates a hypercube graph on the planar layouts of <span><math><mi>T</mi></math></span>. One consequence of this result is a method of efficiently counting the number of distinct planar tanglegram layouts of a planar tanglegram.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114815"},"PeriodicalIF":0.7,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145158889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance, oddness and colouring defect of snarks 蛇纹的抗性、奇性和着色缺陷
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-24 DOI: 10.1016/j.disc.2025.114804
Imran Allie
{"title":"Resistance, oddness and colouring defect of snarks","authors":"Imran Allie","doi":"10.1016/j.disc.2025.114804","DOIUrl":"10.1016/j.disc.2025.114804","url":null,"abstract":"<div><div>Let <em>G</em> be a bridgeless cubic graph. The <em>resistance</em> of <em>G</em>, denoted <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum number of edges which can be removed from <em>G</em> in order to render 3-edge-colourability. The <em>oddness</em> of <em>G</em>, denoted <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum number of odd components in any 2-factor of <em>G</em>. The <em>colouring defect</em> of <em>G</em> (or simply, the <em>defect</em> of <em>G</em>), denoted <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum number of edges not contained in any set of three perfect matchings of <em>G</em>. These three parameters are regarded as measurements of uncolourability of snarks, partly because all of these parameters equal zero if and only if <em>G</em> is 3-edge-colourable. It is also known that <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> <span><span>[5]</span></span>, <span><span>[6]</span></span>. We have shown that the ratio of oddness to resistance can be arbitrarily large for non-trivial snarks <span><span>[1]</span></span>. It has also been shown that the ratio of the defect to oddness can be arbitrarily large for non-trivial snarks, although this result was only shown for graphs with oddness equal to 2 <span><span>[7]</span></span>. In the same paper, the question was posed whether there exists non-trivial snarks for given resistance <em>r</em> or given oddness <em>ω</em>, and arbitrarily large defect. In this paper, we prove a stronger result: For any positive integers <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, even <span><math><mi>ω</mi><mo>≥</mo><mi>r</mi></math></span>, and <span><math><mi>d</mi><mo>≥</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>ω</mi></math></span>, there exists a non-trivial snark <em>G</em> with <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>r</mi></math></span>, <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>ω</mi></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>d</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114804"},"PeriodicalIF":0.7,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bidirected graphs, integral quadratic forms and some Diophantine equations 双向图,积分二次型和一些丢番图方程
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-09-24 DOI: 10.1016/j.disc.2025.114811
Jesús Arturo Jiménez González , Andrzej Mróz
{"title":"Bidirected graphs, integral quadratic forms and some Diophantine equations","authors":"Jesús Arturo Jiménez González ,&nbsp;Andrzej Mróz","doi":"10.1016/j.disc.2025.114811","DOIUrl":"10.1016/j.disc.2025.114811","url":null,"abstract":"<div><div>Bidirected graphs are multigraphs where every edge has an independent direction at each end. In the paper, with an arbitrary bidirected graph we associate a non-negative integral quadratic form (called the incidence form of the graph), and determine all forms that appear in this way in two main results: first, among non-negative connected unit forms, precisely those of Dynkin type <span><math><mi>A</mi></math></span> or <span><math><mi>D</mi></math></span> are incidence forms; second, we give simple conditions on the coefficients of a non-negative connected non-unitary form to be an incidence form. We say that those non-unitary forms have Dynkin type <span><math><mi>C</mi></math></span>, and justify such nomenclature by generalizing known classifications and properties of non-negative integral quadratic forms of Dynkin types <span><math><mi>A</mi></math></span> and <span><math><mi>D</mi></math></span> to the introduced type <span><math><mi>C</mi></math></span>. We also show that the graphical framework of an incidence form is an useful tool to visualize its arithmetical properties, to prove new facts and to perform efficient computations for integral quadratic forms and related problems in number theory, algebra and graph theory. For instance, in a third main result we relate the walks of a bidirected graph with the <span><math><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>-roots of the associated incidence form (and to the classical root systems in the positive case). Moreover, we prove the universality property for a large class of integral quadratic forms, provide computational methods to find solutions or to characterize the finiteness of the sets of solutions of various related Diophantine equations, show a variant of Whitney's theorem on line graphs using switching classes, and apply our techniques to give a conceptual and constructive proof of the non-negativity (and possible Dynkin types) of the Euler quadratic forms of a class of finite-dimensional gentle algebras.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114811"},"PeriodicalIF":0.7,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信