Discrete Mathematics最新文献

筛选
英文 中文
Clustering of consecutive numbers in permutations avoiding a pattern of length three or avoiding a finite number of simple patterns 避免长度为 3 的模式或避免有限数量的简单模式的连续数字排列组合
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-08 DOI: 10.1016/j.disc.2024.114199
{"title":"Clustering of consecutive numbers in permutations avoiding a pattern of length three or avoiding a finite number of simple patterns","authors":"","doi":"10.1016/j.disc.2024.114199","DOIUrl":"10.1016/j.disc.2024.114199","url":null,"abstract":"<div><p>For <span><math><mi>η</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, let <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span> denote the set of permutations in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that avoid the pattern <em>η</em>, and let <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span> denote the expectation with respect to the uniform probability measure on <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>τ</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>, let <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> denote the number of occurrences of <em>k</em> consecutive numbers appearing in <em>k</em> consecutive positions in <span><math><mi>σ</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>, and let <span><math><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>;</mo><mi>τ</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>σ</mi><mo>)</mo></math></span> denote the number of such occurrences for which the order of the appearance of the <em>k</em> numbers is the pattern <em>τ</em>. We obtain explicit formulas for <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>;</mo><mi>τ</mi><mo>)</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup><msubsup><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup></math></span>, for all <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></math></span>, all <span><math><mi>η</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and all <span><math><mi>τ</mi><mo>∈</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow><mrow><mtext>av</mtext><mo>(</mo><mi>η</mi><mo>)</mo></mrow></msubsup></math></span>. These exact formulas then yield asymptotic formulas as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> with <em>k</em> fixed, and as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Average mixing in quantum walks of reversible Markov chains 可逆马尔可夫链量子行走中的平均混合
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-08 DOI: 10.1016/j.disc.2024.114196
{"title":"Average mixing in quantum walks of reversible Markov chains","authors":"","doi":"10.1016/j.disc.2024.114196","DOIUrl":"10.1016/j.disc.2024.114196","url":null,"abstract":"<div><p>The Szegedy quantum walk is a discrete time quantum walk model which defines a quantum analogue of any Markov chain. The long-term behavior of the quantum walk can be encoded in a matrix called the <em>average mixing matrix</em>, whose columns give the limiting probability distribution of the walk given an initial state. We define a version of the average mixing matrix of the Szegedy quantum walk which allows us to more readily compare the limiting behavior to that of the chain it quantizes. We prove a formula for our mixing matrix in terms of the spectral decomposition of the Markov chain and show a relationship with the mixing matrix of a continuous quantum walk on the chain. In particular, we prove that average uniform mixing in the continuous walk implies average uniform mixing in the Szegedy walk. We conclude by giving examples of Markov chains of arbitrarily large size which admit average uniform mixing in both the continuous and Szegedy quantum walk.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003273/pdfft?md5=837d04cd2734695aceae3a30d279780f&pid=1-s2.0-S0012365X24003273-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Hamiltonian decompositions of complete 3-uniform hypergraphs 论完整 3-Uniform 超图的哈密顿分解
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-08 DOI: 10.1016/j.disc.2024.114197
{"title":"On Hamiltonian decompositions of complete 3-uniform hypergraphs","authors":"","doi":"10.1016/j.disc.2024.114197","DOIUrl":"10.1016/j.disc.2024.114197","url":null,"abstract":"<div><p>Based on the definition of Hamiltonian cycles by Katona and Kierstead, we present a recursive construction of tight Hamiltonian decompositions of complete 3-uniform hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, and complete multipartite 3-uniform hypergraph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span>, where <em>t</em> is the number of partite sets and <em>n</em> is the size of each partite set. For <span><math><mi>t</mi><mo>≡</mo><mn>4</mn><mo>,</mo><mn>8</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>12</mn><mo>)</mo></math></span>, we utilize a tight Hamiltonian decomposition of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> to construct those of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for all positive integers <em>n</em>. By applying our method in conjunction with the current results in literature, we obtain tight Hamiltonian decompositions for infinitely many hypergraphs, namely complete hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> and complete multipartite hypergraphs <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> for any positive integer <em>n</em>, and <span><math><mi>t</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>5</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mn>7</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span>, and <span><math><mn>11</mn><mo>⋅</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Z2Z4-ACP of codes and their applications to the noiseless two-user binary adder channel 编码 Z2Z4-ACP 及其在无噪声双用户二进制加法器信道中的应用
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-07 DOI: 10.1016/j.disc.2024.114194
{"title":"Z2Z4-ACP of codes and their applications to the noiseless two-user binary adder channel","authors":"","doi":"10.1016/j.disc.2024.114194","DOIUrl":"10.1016/j.disc.2024.114194","url":null,"abstract":"<div><p>Linear complementary pair (abbreviated to LCP) of codes were defined by Ngo et al. in 2015, and were proved that these pairs of codes can help to improve the security of the information processed by sensitive devices, especially against so-called side-channel attacks (SCA) and fault injection attacks (FIA). In this paper, we first generalize the LCP of codes over finite fields to the additive complementary pair (ACP) of codes in the ambient space with mixed binary and quaternary alphabets. Then we provide two characterizations for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-additive codes pair <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> to be <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes. Meanwhile, we obtain a sufficient condition for the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-additive codes pair <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> to be <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes. Under suitable conditions, we derive a necessary and sufficient condition for the Gray map Φ image of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> to be LCP of codes over <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Finally, we exhibit an interesting application of a special class of the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-ACP of codes in coding for the two-user binary adder channel.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On linear complementary pairs of algebraic geometry codes over finite fields 论有限域上代数几何编码的线性互补对
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-07 DOI: 10.1016/j.disc.2024.114193
{"title":"On linear complementary pairs of algebraic geometry codes over finite fields","authors":"","doi":"10.1016/j.disc.2024.114193","DOIUrl":"10.1016/j.disc.2024.114193","url":null,"abstract":"<div><p>Linear complementary dual (LCD) codes and linear complementary pairs (LCP) of codes have been proposed for new applications as countermeasures against side-channel attacks (SCA) and fault injection attacks (FIA) in the context of direct sum masking (DSM). The countermeasure against FIA may lead to a vulnerability for SCA when the whole algorithm needs to be masked (in environments like smart cards). This led to a variant of the LCD and LCP problems, where several results were obtained intensively for LCD codes, but only partial results were derived for LCP codes. Given the gap between the thin results and their particular importance, this paper aims to reduce this by further studying the LCP of codes in special code families and, precisely, the characterization and construction mechanism of LCP codes of algebraic geometry codes over finite fields. Notably, we propose constructing explicit LCP of codes from elliptic curves. Besides, we also study the security parameters of the derived LCP of codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span> (notably for cyclic codes), which are given by the minimum distances <span><math><mi>d</mi><mo>(</mo><mi>C</mi><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>⊥</mo></mrow></msup><mo>)</mo></math></span>. Further, we show that for LCP algebraic geometry codes <span><math><mo>(</mo><mi>C</mi><mo>,</mo><mi>D</mi><mo>)</mo></math></span>, the dual code <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is equivalent to <span><math><mi>D</mi></math></span> under some specific conditions we exhibit. Finally, we investigate whether MDS LCP of algebraic geometry codes exist (MDS codes are among the most important in coding theory due to their theoretical significance and practical interests). Construction schemes for obtaining LCD codes from any algebraic curve were given in 2018 by Mesnager, Tang and Qi in <span><span>[11]</span></span>. To our knowledge, it is the first time LCP of algebraic geometry codes has been studied.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New upper bounds on the number of non-zero weights of constacyclic codes 常环码非零权重数的新上限
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-05 DOI: 10.1016/j.disc.2024.114200
{"title":"New upper bounds on the number of non-zero weights of constacyclic codes","authors":"","doi":"10.1016/j.disc.2024.114200","DOIUrl":"10.1016/j.disc.2024.114200","url":null,"abstract":"<div><p>For any simple-root constacyclic code <span><math><mi>C</mi></math></span> over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, as far as we know, the group <span><math><mi>G</mi></math></span> generated by the multiplier, the constacyclic shift and the scalar multiplications is the largest subgroup of the automorphism group <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of <span><math><mi>C</mi></math></span>. In this paper, by calculating the number of <span><math><mi>G</mi></math></span>-orbits of <span><math><mi>C</mi><mo>﹨</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>, we give an explicit upper bound on the number of non-zero weights of <span><math><mi>C</mi></math></span> and present a necessary and sufficient condition for <span><math><mi>C</mi></math></span> to meet the upper bound. Some examples in this paper show that our upper bound is tight and better than the upper bounds in Zhang and Cao (2024) <span><span>[26]</span></span>. In particular, our main results provide a new method to construct few-weight constacyclic codes. Furthermore, for the constacyclic code <span><math><mi>C</mi></math></span> belonging to two special types, we obtain a smaller upper bound on the number of non-zero weights of <span><math><mi>C</mi></math></span> by substituting <span><math><mi>G</mi></math></span> with a larger subgroup of <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span>. The results derived in this paper generalize the main results in Chen et al. (2024) <span><span>[9]</span></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the combinatorics of r-chain minimal and maximal excludants 论 r 链最小和最大排除子的组合学
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-02 DOI: 10.1016/j.disc.2024.114187
{"title":"On the combinatorics of r-chain minimal and maximal excludants","authors":"","doi":"10.1016/j.disc.2024.114187","DOIUrl":"10.1016/j.disc.2024.114187","url":null,"abstract":"<div><p>The minimal excludant (mex) of a partition was introduced by Grabner and Knopfmacher under the name ‘least gap’ and was recently revived by Andrews and Newman. It has been widely studied in recent years together with the complementary partition statistic maximal excludant (maex), first introduced by Chern. Among such recent works, the first and second authors along with Maji introduced and studied the <em>r</em>-chain minimal excludants (<em>r</em>-chain mex) which led to a new generalization of Euler's classical partition theorem and the sum-of-mex identity of Andrews and Newman. In this paper, we first give combinatorial proofs for these two results on <em>r</em>-chain mex. Then we also establish the associated identity for the <em>r</em>-chain maximal excludant, recently introduced by the first two authors and Maji, both analytically and combinatorially.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the cycle isolation number of triangle-free graphs 关于无三角形图形的循环隔离数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-01 DOI: 10.1016/j.disc.2024.114190
{"title":"On the cycle isolation number of triangle-free graphs","authors":"","doi":"10.1016/j.disc.2024.114190","DOIUrl":"10.1016/j.disc.2024.114190","url":null,"abstract":"<div><p>For a graph <em>G</em>, a subset <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called a cycle isolating set of <em>G</em> if <span><math><mi>G</mi><mo>−</mo><mi>N</mi><mo>[</mo><mi>D</mi><mo>]</mo></math></span> contains no cycle. The cycle isolation number of <em>G</em>, denoted by <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum cardinality of a cycle isolating set of <em>G</em>. Recently, Borg proved that if <em>G</em> is a connected <em>n</em>-vertex graph that is not a triangle, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math></span>. In this paper, we prove that if <em>G</em> is a connected triangle-free <em>n</em>-vertex graph that is not a 4-cycle, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>. In particular, we characterize the subcubic graphs that attain the bound. For graphs with larger girth, several conjectures are proposed.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toughness and spectral radius in graphs 图形中的韧性和谱半径
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-01 DOI: 10.1016/j.disc.2024.114191
{"title":"Toughness and spectral radius in graphs","authors":"","doi":"10.1016/j.disc.2024.114191","DOIUrl":"10.1016/j.disc.2024.114191","url":null,"abstract":"<div><p>The <em>toughness</em> <span><math><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a non-complete graph <em>G</em> is defined as <span><math><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></mfrac><mo>}</mo></math></span> in which the minimum is taken over all proper sets <span><math><mi>S</mi><mo>⊂</mo><mi>G</mi></math></span> such that <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> is disconnected, where <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></math></span> denotes the number of components of <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span>. Conjectured by Brouwer and proved by Gu, a toughness theorem state that every <em>d</em>-regular connected graph always has <span><math><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>&gt;</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>−</mo><mn>1</mn></math></span>, where <em>λ</em> is the second largest absolute eigenvalue of the adjacency matrix. In 1988, Enomoto introduced a variation of toughness <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em>, which is defined by <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo><mi>S</mi><mo>⊂</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo><mo>&gt;</mo><mn>1</mn><mo>}</mo></math></span>. By incorporating the variation of toughness and spectral conditions, we provide spectral conditions for a graph to be <em>τ</em>-tough (<span><math><mi>τ</mi><mo>≥</mo><mn>2</mn></math></span> is an integer) and to be <em>τ</em>-tough (<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>τ</mi></mrow></mfrac></math></span> is a positive integer) with minimum degree <em>δ</em>, respectively. Additionally, we also investigate a analogous problem concerning balanced bipartite graphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-depth analysis of S-boxes over binary finite fields concerning their differential and Feistel boomerang differential uniformities 深入分析二元有限域上的 S-boxes 及其微分和费斯特尔回旋镖微分均匀性
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-07-31 DOI: 10.1016/j.disc.2024.114185
{"title":"In-depth analysis of S-boxes over binary finite fields concerning their differential and Feistel boomerang differential uniformities","authors":"","doi":"10.1016/j.disc.2024.114185","DOIUrl":"10.1016/j.disc.2024.114185","url":null,"abstract":"<div><p>Substitution boxes (S-boxes) play a significant role in ensuring the resistance of block ciphers against various attacks. The Difference Distribution Table (DDT), the Feistel Boomerang Connectivity Table (FBCT), the Feistel Boomerang Difference Table (FBDT) and the Feistel Boomerang Extended Table (FBET) of a given S-box are crucial tools to analyze its security concerning specific attacks. However, the results on them are rare. In this paper, we investigate the properties of the power function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msup></math></span> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi></math></span> or <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span> (<em>m</em> stands for a positive integer). As a consequence, by carrying out certain finer manipulations of solving specific equations over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, we give explicit values of all entries of the DDT, the FBCT, the FBDT and the FBET of the investigated power functions. From the theoretical point of view, our study pushes further former investigations on differential and Feistel boomerang differential uniformities for a novel power function <em>F</em>. From a cryptographic point of view, when considering Feistel block cipher involving <em>F</em>, our in-depth analysis helps select <em>F</em> resistant to differential attacks, Feistel differential attacks and Feistel boomerang attacks, respectively.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信