Discrete Mathematics最新文献

筛选
英文 中文
Q-independence and the construction of Bh-sets of integers and lattice points q无关性和b -整数和格点集合的构造
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-20 DOI: 10.1016/j.disc.2025.114726
Melvyn B. Nathanson
{"title":"Q-independence and the construction of Bh-sets of integers and lattice points","authors":"Melvyn B. Nathanson","doi":"10.1016/j.disc.2025.114726","DOIUrl":"10.1016/j.disc.2025.114726","url":null,"abstract":"<div><div>This paper gives a new <strong>Q</strong>-vector space construction of finite <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>-sets of integers and lattice points.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114726"},"PeriodicalIF":0.7,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144863575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gallai's conjecture and the path number of odd semi-cliques 加莱猜想与奇半团的路径数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-18 DOI: 10.1016/j.disc.2025.114725
Yanan Chu , Genghua Fan , Chuixiang Zhou
{"title":"Gallai's conjecture and the path number of odd semi-cliques","authors":"Yanan Chu ,&nbsp;Genghua Fan ,&nbsp;Chuixiang Zhou","doi":"10.1016/j.disc.2025.114725","DOIUrl":"10.1016/j.disc.2025.114725","url":null,"abstract":"<div><div>Let <em>G</em> be a graph with <em>n</em> vertices. A path decomposition of <em>G</em> is a set of edge-disjoint paths including all the edges of <em>G</em>. Let <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum number of paths in a path decomposition of <em>G</em>. Gallai's Conjecture asserts that if <em>G</em> is connected, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. The <em>E</em>-subgraph of <em>G</em> is the subgraph induced by the vertices of even degree in <em>G</em>. A well-known result of Lovász is that if the <em>E</em>-subgraph of <em>G</em> is empty or isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. In this paper, we prove that if the <em>E</em>-subgraph of <em>G</em> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with <span><math><mi>m</mi><mo>≤</mo><mn>15</mn></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, which implies, under the condition, that Gallai's Conjecture holds when <em>n</em> is odd. A simple graph <em>G</em> on <em>n</em> vertices is called a semi-clique if <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>&gt;</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. By the definition, if <em>G</em> is a semi-clique on <em>n</em> vertices, then <em>n</em> must be odd and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. As a corollary of our main result, we obtain that if <em>G</em> is a semi-clique on <em>n</em> vertices, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>7</mn></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114725"},"PeriodicalIF":0.7,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144860521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatic and achromatic numbers of unitary addition Cayley graphs 酉加法凯莱图的色差数和消色差数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-14 DOI: 10.1016/j.disc.2025.114735
Keenan Calhoun, Yeşim Demiroğlu Karabulut, Vincent Pigno, Craig Timmons
{"title":"Chromatic and achromatic numbers of unitary addition Cayley graphs","authors":"Keenan Calhoun,&nbsp;Yeşim Demiroğlu Karabulut,&nbsp;Vincent Pigno,&nbsp;Craig Timmons","doi":"10.1016/j.disc.2025.114735","DOIUrl":"10.1016/j.disc.2025.114735","url":null,"abstract":"<div><div>Let <em>R</em> be a ring. The unitary addition Cayley graph of <em>R</em>, denoted <span><math><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, is the graph with vertex <em>R</em>, and two distinct vertices <em>x</em> and <em>y</em> are adjacent if and only if <span><math><mi>x</mi><mo>+</mo><mi>y</mi></math></span> is a unit. We determine a formula for the clique number and chromatic number of such graphs when <em>R</em> is a finite commutative ring with an odd number of elements. This includes the special case when <em>R</em> is <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the integers modulo <em>n</em>, where these parameters had been found under the assumption that <em>n</em> is even, or <em>n</em> is a power of an odd prime. Additionally, we study the achromatic number of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> in the case that <em>n</em> is the product of two primes. We prove that the achromatic number of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn><mi>q</mi></mrow></msub><mo>)</mo></math></span> is equal to <span><math><mfrac><mrow><mn>3</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> when <span><math><mi>q</mi><mo>&gt;</mo><mn>3</mn></math></span> is a prime. We also prove a lower bound that applies when <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>q</mi></math></span> where <em>p</em> and <em>q</em> are distinct odd primes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114735"},"PeriodicalIF":0.7,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144828918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clocks are e-positive 时钟是e阳性的
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-14 DOI: 10.1016/j.disc.2025.114723
L. Chen , Y.T. He , David G.L. Wang
{"title":"Clocks are e-positive","authors":"L. Chen ,&nbsp;Y.T. He ,&nbsp;David G.L. Wang","doi":"10.1016/j.disc.2025.114723","DOIUrl":"10.1016/j.disc.2025.114723","url":null,"abstract":"<div><div>Along with his confirmation of the <em>e</em>-positivity of all cycle-chord graphs <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>a</mi><mi>b</mi><mn>1</mn></mrow></msub></math></span>, the third author conjectured the <em>e</em>-positivity of all theta graphs <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>c</mi></mrow></msub></math></span>. In this paper, we establish the <em>e</em>-positivity of all clock graphs <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>a</mi><mi>b</mi><mn>2</mn></mrow></msub></math></span> by using the composition method. The key idea is to investigate the fibers of certain partial reversal transformation on compositions with all parts at least 2.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114723"},"PeriodicalIF":0.7,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144827353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dichromatic number of digraphs without induced subdigraphs 没有诱导子向图的有向图的二色数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-14 DOI: 10.1016/j.disc.2025.114729
Bin Chen , Xinmin Hou
{"title":"The dichromatic number of digraphs without induced subdigraphs","authors":"Bin Chen ,&nbsp;Xinmin Hou","doi":"10.1016/j.disc.2025.114729","DOIUrl":"10.1016/j.disc.2025.114729","url":null,"abstract":"<div><div>Let <em>D</em> be a digraph. The dichromatic number of <em>D</em> is the smallest number of colors needed to color the vertices of <em>D</em> such that each color class induces a subdigraph without directed cycles. In this paper, we investigate a conjecture proposed by Aboulker, Charbit and Naserasr, which extends the well known Gyárfás-Sumner conjecture to digraphs. Let <span><math><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span> and <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span> be a directed path and a directed cycle on <em>k</em> vertices, respectively. Denote by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> the family of all oriented cycles on 3 vertices. We prove that every <span><math><mo>{</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>7</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free oriented graph has dichromatic number at most 190. Additionally, we verify that the dichromatic number of any <span><math><mo>{</mo><mover><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free oriented graph is at most 178, improving a result of Aboulker, Aubian, Charbit and Thomassé.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114729"},"PeriodicalIF":0.7,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144829497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete bipartite immersion in graphs with independence number two: A simple proof 具有独立性2的完全二部浸入图:一个简单的证明
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-13 DOI: 10.1016/j.disc.2025.114737
Rong Chen, Zijian Deng
{"title":"Complete bipartite immersion in graphs with independence number two: A simple proof","authors":"Rong Chen,&nbsp;Zijian Deng","doi":"10.1016/j.disc.2025.114737","DOIUrl":"10.1016/j.disc.2025.114737","url":null,"abstract":"<div><div>A conjecture akin to Hadwiger's conjecture posits that every graph <em>G</em> contains an immersion of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub></math></span>. Vergara showed that, for every <em>n</em>-vertex graph <em>G</em> with independence number two, this is equivalent to saying that <em>G</em> contains an immersion of the complete graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices. Recently, Botler et al. showed that every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span> contains every complete bipartite graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices as an immersion. In this paper, we give a much simpler proof of this result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114737"},"PeriodicalIF":0.7,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144830225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laguerre inequalities for plane partition 平面划分的拉盖尔不等式
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-13 DOI: 10.1016/j.disc.2025.114714
Zhen-Yu Gao, Larry X.W. Wang
{"title":"Laguerre inequalities for plane partition","authors":"Zhen-Yu Gao,&nbsp;Larry X.W. Wang","doi":"10.1016/j.disc.2025.114714","DOIUrl":"10.1016/j.disc.2025.114714","url":null,"abstract":"<div><div>In this paper, we establish the Laguerre inequalities of order 2 and 3 for the number of plane partition <span><math><mrow><mi>PL</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. We also demonstrate that <span><math><mrow><mi>PL</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> satisfies the double Turán inequality. Moreover, we give an upper bound for the threshold of the Laguerre inequality of any order <span><math><mi>r</mi><mo>&gt;</mo><mn>3</mn></math></span> for <span><math><mrow><mi>PL</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114714"},"PeriodicalIF":0.7,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144827352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterisation of lines in finite Lie incidence geometries of classical type 经典型有限李关联几何中线的表征
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-13 DOI: 10.1016/j.disc.2025.114711
Sira Busch , Hendrik Van Maldeghem
{"title":"A characterisation of lines in finite Lie incidence geometries of classical type","authors":"Sira Busch ,&nbsp;Hendrik Van Maldeghem","doi":"10.1016/j.disc.2025.114711","DOIUrl":"10.1016/j.disc.2025.114711","url":null,"abstract":"<div><div>We consider any classical Grassmannian geometry Γ; that is, any projective or polar Grassmann space. Suppose every line in Γ contains <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span> points. Then we classify all sets of points in Γ of cardinality <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span>, with the property, that no object of opposite type in the corresponding building, is opposite every point of the set. It turns out that such sets are either lines, or hyperbolic lines in symplectic residues, or ovoids in large symplectic subquadrangles of rank 2 residues in characteristic 2. This is a far-reaching extension of a famous and fundamental result of Bose &amp; Burton from the 1960s. We describe a new way to classify geometric lines in finite classical geometries and how our results correspond to blocking sets.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114711"},"PeriodicalIF":0.7,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144829496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the strict Chvátal-condition and nowhere-zero 3-flows 在严格的Chvátal-condition和无处零3流
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-12 DOI: 10.1016/j.disc.2025.114728
Na Yang, Jian-Hua Yin
{"title":"On the strict Chvátal-condition and nowhere-zero 3-flows","authors":"Na Yang,&nbsp;Jian-Hua Yin","doi":"10.1016/j.disc.2025.114728","DOIUrl":"10.1016/j.disc.2025.114728","url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph on <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> vertices and <span><math><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> be the degree sequence of <em>G</em> with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The classical Chvátal's theorem states that if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> or <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>j</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>j</mi></math></span> for each <em>j</em> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> is hamiltonian, which implies that <em>G</em> has a nowhere-zero 4-flow. Given an integer <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, we say that the graph <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> for each <span><math><mi>j</mi><mo>≠</mo><mi>i</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>i</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>i</mi></math></span>. In this paper, we show that if <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> for some <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> has no nowhere-zero 3-flow if and only if <span><math><mi>i</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>9</mn></mrow></msub><mo>}</mo></math></span> as described in Fig. 2.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114728"},"PeriodicalIF":0.7,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144826476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundedness for proper conflict-free and odd colorings 适当的无冲突和奇数着色的有界性
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-08-12 DOI: 10.1016/j.disc.2025.114730
A. Jiménez , K. Knauer , C.N. Lintzmayer , M. Matamala , J.P. Peña , D.A. Quiroz , M. Sambinelli , Y. Wakabayashi , W. Yu , J. Zamora
{"title":"Boundedness for proper conflict-free and odd colorings","authors":"A. Jiménez ,&nbsp;K. Knauer ,&nbsp;C.N. Lintzmayer ,&nbsp;M. Matamala ,&nbsp;J.P. Peña ,&nbsp;D.A. Quiroz ,&nbsp;M. Sambinelli ,&nbsp;Y. Wakabayashi ,&nbsp;W. Yu ,&nbsp;J. Zamora","doi":"10.1016/j.disc.2025.114730","DOIUrl":"10.1016/j.disc.2025.114730","url":null,"abstract":"<div><div>The <em>proper conflict-free chromatic number</em>, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of a graph <em>G</em> is the least positive integer <em>k</em> such that <em>G</em> has a proper <em>k</em>-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The <em>proper odd chromatic number</em>, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em> is the least positive integer <em>k</em> such that <em>G</em> has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We clearly have <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We say that a graph class <span><math><mi>G</mi></math></span> is <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span><em>-bounded</em> (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span><em>-bounded</em>) if there is a function <em>f</em> such that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>) for every <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>. Caro, Petruševski, and Škrekovski (2023) asked for classes that are linearly <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span>-bounded (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span>-bounded) and, as a starting point, they showed that every claw-free graph <em>G</em> satisfies <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, which implies <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>4</mn><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>.</div><div>In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph <em>G</em> satisfies <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>6</mn></math></span>, and even <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></m","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114730"},"PeriodicalIF":0.7,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144826477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信