{"title":"具有独立性2的完全二部浸入图:一个简单的证明","authors":"Rong Chen, Zijian Deng","doi":"10.1016/j.disc.2025.114737","DOIUrl":null,"url":null,"abstract":"<div><div>A conjecture akin to Hadwiger's conjecture posits that every graph <em>G</em> contains an immersion of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub></math></span>. Vergara showed that, for every <em>n</em>-vertex graph <em>G</em> with independence number two, this is equivalent to saying that <em>G</em> contains an immersion of the complete graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices. Recently, Botler et al. showed that every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span> contains every complete bipartite graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices as an immersion. In this paper, we give a much simpler proof of this result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114737"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete bipartite immersion in graphs with independence number two: A simple proof\",\"authors\":\"Rong Chen, Zijian Deng\",\"doi\":\"10.1016/j.disc.2025.114737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A conjecture akin to Hadwiger's conjecture posits that every graph <em>G</em> contains an immersion of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub></math></span>. Vergara showed that, for every <em>n</em>-vertex graph <em>G</em> with independence number two, this is equivalent to saying that <em>G</em> contains an immersion of the complete graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices. Recently, Botler et al. showed that every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span> contains every complete bipartite graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices as an immersion. In this paper, we give a much simpler proof of this result.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114737\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003450\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003450","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Complete bipartite immersion in graphs with independence number two: A simple proof
A conjecture akin to Hadwiger's conjecture posits that every graph G contains an immersion of the complete graph . Vergara showed that, for every n-vertex graph G with independence number two, this is equivalent to saying that G contains an immersion of the complete graph on vertices. Recently, Botler et al. showed that every n-vertex graph G with contains every complete bipartite graph on vertices as an immersion. In this paper, we give a much simpler proof of this result.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.