A. Jiménez , K. Knauer , C.N. Lintzmayer , M. Matamala , J.P. Peña , D.A. Quiroz , M. Sambinelli , Y. Wakabayashi , W. Yu , J. Zamora
{"title":"Boundedness for proper conflict-free and odd colorings","authors":"A. Jiménez , K. Knauer , C.N. Lintzmayer , M. Matamala , J.P. Peña , D.A. Quiroz , M. Sambinelli , Y. Wakabayashi , W. Yu , J. Zamora","doi":"10.1016/j.disc.2025.114730","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>proper conflict-free chromatic number</em>, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of a graph <em>G</em> is the least positive integer <em>k</em> such that <em>G</em> has a proper <em>k</em>-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The <em>proper odd chromatic number</em>, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em> is the least positive integer <em>k</em> such that <em>G</em> has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We clearly have <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We say that a graph class <span><math><mi>G</mi></math></span> is <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span><em>-bounded</em> (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span><em>-bounded</em>) if there is a function <em>f</em> such that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>) for every <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>. Caro, Petruševski, and Škrekovski (2023) asked for classes that are linearly <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span>-bounded (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span>-bounded) and, as a starting point, they showed that every claw-free graph <em>G</em> satisfies <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, which implies <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>4</mn><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>.</div><div>In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph <em>G</em> satisfies <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>6</mn></math></span>, and even <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>4</mn></math></span> if it is a quasi-line graph. These results also give further evidence to a conjecture by Caro, Petruševski, and Škrekovski. Moreover, we show that convex-round graphs and permutation graphs are linearly <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span>-bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span>-bounded to deciding if the bipartite graphs in the class are <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span>-bounded by an absolute constant. This lemma complements a theorem of Liu (2024) and motivates us to further study boundedness in bipartite graphs. Among other results, we show that biconvex bipartite graphs are <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span>-bounded, while convex bipartite graphs are not even <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span>-bounded, and we exhibit a class of bipartite circle graphs that is linearly <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub></math></span>-bounded but not <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow></msub></math></span>-bounded.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114730"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003383","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The proper conflict-free chromatic number, , of a graph G is the least positive integer k such that G has a proper k-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chromatic number, , of G is the least positive integer k such that G has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We clearly have . We say that a graph class is -bounded (-bounded) if there is a function f such that () for every . Caro, Petruševski, and Škrekovski (2023) asked for classes that are linearly -bounded (-bounded) and, as a starting point, they showed that every claw-free graph G satisfies , which implies .
In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph G satisfies , and even if it is a quasi-line graph. These results also give further evidence to a conjecture by Caro, Petruševski, and Škrekovski. Moreover, we show that convex-round graphs and permutation graphs are linearly -bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly -bounded to deciding if the bipartite graphs in the class are -bounded by an absolute constant. This lemma complements a theorem of Liu (2024) and motivates us to further study boundedness in bipartite graphs. Among other results, we show that biconvex bipartite graphs are -bounded, while convex bipartite graphs are not even -bounded, and we exhibit a class of bipartite circle graphs that is linearly -bounded but not -bounded.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.