{"title":"在严格的Chvátal-condition和无处零3流","authors":"Na Yang, Jian-Hua Yin","doi":"10.1016/j.disc.2025.114728","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph on <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> vertices and <span><math><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> be the degree sequence of <em>G</em> with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The classical Chvátal's theorem states that if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> or <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>j</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>j</mi></math></span> for each <em>j</em> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> is hamiltonian, which implies that <em>G</em> has a nowhere-zero 4-flow. Given an integer <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, we say that the graph <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> for each <span><math><mi>j</mi><mo>≠</mo><mi>i</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>i</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>i</mi></math></span>. In this paper, we show that if <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> for some <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> has no nowhere-zero 3-flow if and only if <span><math><mi>i</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>9</mn></mrow></msub><mo>}</mo></math></span> as described in Fig. 2.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114728"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the strict Chvátal-condition and nowhere-zero 3-flows\",\"authors\":\"Na Yang, Jian-Hua Yin\",\"doi\":\"10.1016/j.disc.2025.114728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a simple graph on <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> vertices and <span><math><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> be the degree sequence of <em>G</em> with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The classical Chvátal's theorem states that if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> or <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>j</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>j</mi></math></span> for each <em>j</em> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> is hamiltonian, which implies that <em>G</em> has a nowhere-zero 4-flow. Given an integer <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, we say that the graph <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> for each <span><math><mi>j</mi><mo>≠</mo><mi>i</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>i</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>i</mi></math></span>. In this paper, we show that if <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> for some <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo><</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> has no nowhere-zero 3-flow if and only if <span><math><mi>i</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>9</mn></mrow></msub><mo>}</mo></math></span> as described in Fig. 2.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114728\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2500336X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500336X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the strict Chvátal-condition and nowhere-zero 3-flows
Let G be a simple graph on vertices and be the degree sequence of G with . The classical Chvátal's theorem states that if or for each j with , then G is hamiltonian, which implies that G has a nowhere-zero 4-flow. Given an integer i with , we say that the graph G satisfies the strict Chvátal-condition on i if for each with , and . In this paper, we show that if G satisfies the strict Chvátal-condition on i for some i with , then G has no nowhere-zero 3-flow if and only if and as described in Fig. 2.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.