On the strict Chvátal-condition and nowhere-zero 3-flows

IF 0.7 3区 数学 Q2 MATHEMATICS
Na Yang, Jian-Hua Yin
{"title":"On the strict Chvátal-condition and nowhere-zero 3-flows","authors":"Na Yang,&nbsp;Jian-Hua Yin","doi":"10.1016/j.disc.2025.114728","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph on <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> vertices and <span><math><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> be the degree sequence of <em>G</em> with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. The classical Chvátal's theorem states that if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> or <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>j</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>j</mi></math></span> for each <em>j</em> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> is hamiltonian, which implies that <em>G</em> has a nowhere-zero 4-flow. Given an integer <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, we say that the graph <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mi>j</mi><mo>+</mo><mn>1</mn></math></span> for each <span><math><mi>j</mi><mo>≠</mo><mi>i</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>j</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>i</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msub><mo>≥</mo><mi>n</mi><mo>−</mo><mi>i</mi></math></span>. In this paper, we show that if <em>G</em> satisfies the strict Chvátal-condition on <em>i</em> for some <em>i</em> with <span><math><mn>2</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, then <em>G</em> has no nowhere-zero 3-flow if and only if <span><math><mi>i</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>G</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>9</mn></mrow></msub><mo>}</mo></math></span> as described in Fig. 2.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114728"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500336X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple graph on n3 vertices and (d1,,dn) be the degree sequence of G with d1dn. The classical Chvátal's theorem states that if djj+1 or dnjnj for each j with 1j<n2, then G is hamiltonian, which implies that G has a nowhere-zero 4-flow. Given an integer i with 2i<n2, we say that the graph G satisfies the strict Chvátal-condition on i if djj+1 for each ji with 1j<n2, di=i and dnini. In this paper, we show that if G satisfies the strict Chvátal-condition on i for some i with 2i<n2, then G has no nowhere-zero 3-flow if and only if i=3 and G{G8,G9} as described in Fig. 2.
在严格的Chvátal-condition和无处零3流
设G为n≥3个顶点的简单图,(d1,…,dn)为d1≤⋯≤dn的G度序列。经典的Chvátal定理指出,对于1≤j<;n2的每一个j,如果dj≥j+1或dn - j≥n - j,则G是哈密顿函数,这意味着G具有不为零的四流。给定一个整数i,且2≤i<;n2,我们说图G满足i上的严格Chvátal-condition,如果dj≥j+1,且每个j≠i且1≤j<;n2, di=i且dn - i≥n - i。在本文中,我们证明了对于2≤i<;n2的某个i,如果G满足严格Chvátal-condition,则当且仅当i=3且G∈{G8,G9},如图2所示,G不存在无处零的3流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信