Discrete Mathematics最新文献

筛选
英文 中文
A note on clique immersion of strong product graphs 关于强积图的簇嵌入的说明
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-09-04 DOI: 10.1016/j.disc.2024.114237
Chuanshu Wu, Zijian Deng
{"title":"A note on clique immersion of strong product graphs","authors":"Chuanshu Wu,&nbsp;Zijian Deng","doi":"10.1016/j.disc.2024.114237","DOIUrl":"10.1016/j.disc.2024.114237","url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span> be graphs, and <span><math><mi>G</mi><mo>⁎</mo><mi>H</mi></math></span> represent a specific graph product of <em>G</em> and <em>H</em>. Define <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> as the largest <em>t</em> for which <em>G</em> contains a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-immersion. Collins, Heenehan, and McDonald posed the question: given <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> and <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>r</mi></math></span>, how large can <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo></math></span> be? They conjectured <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mi>r</mi></math></span> when ⁎ denotes the strong product. In this note, we affirm that the conjecture holds for graphs with certain immersions, in particular when <em>H</em> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> as a subgraph. As a consequence we also get an alternative argument for a result of Guyer and McDonald, showing that the line graphs of constant-multiplicity multigraphs satisfy the conjecture originally proposed by Abu-Khzam and Langston.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114237"},"PeriodicalIF":0.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003686/pdfft?md5=2175b8b68439085105021d9c5e79d193&pid=1-s2.0-S0012365X24003686-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covering the edges of a graph with triangles 用三角形覆盖图形边缘
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-09-03 DOI: 10.1016/j.disc.2024.114226
Csilla Bujtás , Akbar Davoodi , Laihao Ding , Ervin Győri , Zsolt Tuza , Donglei Yang
{"title":"Covering the edges of a graph with triangles","authors":"Csilla Bujtás ,&nbsp;Akbar Davoodi ,&nbsp;Laihao Ding ,&nbsp;Ervin Győri ,&nbsp;Zsolt Tuza ,&nbsp;Donglei Yang","doi":"10.1016/j.disc.2024.114226","DOIUrl":"10.1016/j.disc.2024.114226","url":null,"abstract":"<div><p>In a graph <em>G</em>, let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum size of a set of edges and triangles that cover all edges of <em>G</em>, and let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study the relationship between <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and establish a sharp upper bound on <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also prove Nordhaus-Gaddum-type inequalities for the considered invariants.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114226"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003571/pdfft?md5=fe63daa1972dde10572b653b88b81a86&pid=1-s2.0-S0012365X24003571-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2-Connected spanning subgraphs of circuit graphs 2 电路图的连接跨度子图
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-09-03 DOI: 10.1016/j.disc.2024.114228
Atsuhiro Nakamoto , Kenta Ozeki , Daiki Takahashi
{"title":"2-Connected spanning subgraphs of circuit graphs","authors":"Atsuhiro Nakamoto ,&nbsp;Kenta Ozeki ,&nbsp;Daiki Takahashi","doi":"10.1016/j.disc.2024.114228","DOIUrl":"10.1016/j.disc.2024.114228","url":null,"abstract":"<div><p>Kaneko et al. <span><span>[12]</span></span> proved that every 3-connected planar graph <em>G</em> has a 2-connected spanning subgraph <em>K</em> such that <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, and they also conjectured that the constant of the estimation can be improved to <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>2</mn><mo>)</mo></math></span> when <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mn>8</mn></math></span>. To prove the result, they showed the statement for a circuit graph, which is obtained from a 3-connected planar graph by deleting one vertex, and the theorem is best possible for circuit graphs. In this paper, we give a characterization of a circuit graph <em>G</em> each of whose 2-connected spanning subgraph <em>K</em> requires <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and then we improve the bound for the 3-connected planar case.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114228"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003595/pdfft?md5=6b926c0cbdadb1ca5769e66c3d298e03&pid=1-s2.0-S0012365X24003595-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degree powers and number of stars in graphs with a forbidden broom 带禁忌扫帚的图形中的度数幂和星数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-09-03 DOI: 10.1016/j.disc.2024.114232
Dániel Gerbner
{"title":"Degree powers and number of stars in graphs with a forbidden broom","authors":"Dániel Gerbner","doi":"10.1016/j.disc.2024.114232","DOIUrl":"10.1016/j.disc.2024.114232","url":null,"abstract":"<div><p>Given a graph <em>G</em> with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and a positive integer <em>r</em>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. We denote by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest value of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> among <em>n</em>-vertex <em>F</em>-free graphs <em>G</em>, and by <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest number of stars <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <em>n</em>-vertex <em>F</em>-free graphs. The <em>broom</em> <span><math><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> is the graph obtained from an <em>ℓ</em>-vertex path by adding <em>s</em> new leaves connected to a penultimate vertex <em>v</em> of the path.</p><p>We determine <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>, proving a conjecture of Lan, Liu, Qin and Shi. We also determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114232"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003637/pdfft?md5=f6743e7fcba7f41401daef264d1fc9cb&pid=1-s2.0-S0012365X24003637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brooks-type theorems for relaxations of square colorings 方形着色松弛的布鲁克斯型定理
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-09-03 DOI: 10.1016/j.disc.2024.114233
Eun-Kyung Cho , Ilkyoo Choi , Hyemin Kwon , Boram Park
{"title":"Brooks-type theorems for relaxations of square colorings","authors":"Eun-Kyung Cho ,&nbsp;Ilkyoo Choi ,&nbsp;Hyemin Kwon ,&nbsp;Boram Park","doi":"10.1016/j.disc.2024.114233","DOIUrl":"10.1016/j.disc.2024.114233","url":null,"abstract":"<div><p>The following relaxation of proper coloring the square of a graph was recently introduced: for a positive integer <em>h</em>, the <em>proper h-conflict-free chromatic number</em> of a graph <em>G</em>, denoted <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum <em>k</em> such that <em>G</em> has a proper <em>k</em>-coloring where every vertex <em>v</em> has <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>}</mo></math></span> colors appearing exactly once on its neighborhood. Caro, Petruševski, and Škrekovski put forth a Brooks-type conjecture: if <em>G</em> is a graph with <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. The best known result regarding the conjecture is <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, which is implied by a result of Pach and Tardos. We improve upon the aforementioned result for all <em>h</em>, and also enlarge the class of graphs for which the conjecture is known to be true.</p><p>Our main result is the following: for a graph <em>G</em>, if <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>h</mi><mo>+</mo><mn>2</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>; this is tight up to the additive term as we explicitly construct infinitely many graphs <em>G</em> with <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that the conjecture is true for chordal graphs, and obtain partial results for quasi-line graphs and claw-free graphs. Our main result also improves upon a Brooks-type result for <em>h</em>-dynamic coloring.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114233"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003649/pdfft?md5=d91aefd107404a4f8392a7adc9d9507d&pid=1-s2.0-S0012365X24003649-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induced subgraphs and tree decompositions VI. Graphs with 2-cutsets 诱导子图和树分解 VI.带 2 切集的图
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-09-02 DOI: 10.1016/j.disc.2024.114195
Tara Abrishami , Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl
{"title":"Induced subgraphs and tree decompositions VI. Graphs with 2-cutsets","authors":"Tara Abrishami ,&nbsp;Maria Chudnovsky ,&nbsp;Sepehr Hajebi ,&nbsp;Sophie Spirkl","doi":"10.1016/j.disc.2024.114195","DOIUrl":"10.1016/j.disc.2024.114195","url":null,"abstract":"<div><p>This paper continues a series of papers investigating the following question: which hereditary graph classes have bounded treewidth? We call a graph <em>t-clean</em> if it does not contain as an induced subgraph the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, subdivisions of a <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall, and line graphs of subdivisions of a <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall. It is known that graphs with bounded treewidth must be <em>t</em>-clean for some <em>t</em>; however, it is not true that every <em>t</em>-clean graph has bounded treewidth. In this paper, we show that three types of cutsets, namely clique cutsets, 2-cutsets, and 1-joins, interact well with treewidth and with each other, so graphs that are decomposable by these cutsets into basic classes of bounded treewidth have bounded treewidth. We apply this result to two hereditary graph classes, the class of (<span><math><mi>I</mi><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, wheel)-free graphs and the class of graphs with no cycle with a unique chord. These classes were previously studied and decomposition theorems were obtained for both classes. Our main results are that <em>t</em>-clean (<span><math><mi>I</mi><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, wheel)-free graphs have bounded treewidth and that <em>t</em>-clean graphs with no cycle with a unique chord have bounded treewidth.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114195"},"PeriodicalIF":0.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003261/pdfft?md5=e8262a89abc8297f51785b66fc0ac9c4&pid=1-s2.0-S0012365X24003261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toroidal Hitomezashi patterns 环状人字形图案
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-30 DOI: 10.1016/j.disc.2024.114231
Qiuyu Ren , Shengtong Zhang
{"title":"Toroidal Hitomezashi patterns","authors":"Qiuyu Ren ,&nbsp;Shengtong Zhang","doi":"10.1016/j.disc.2024.114231","DOIUrl":"10.1016/j.disc.2024.114231","url":null,"abstract":"<div><p>Extending a proposal of Defant and Kravitz (2024) <span><span>[2]</span></span>, we define Hitomezashi patterns and loops on a torus and provide several structural results for such loops. For a given pattern, our main theorems give optimal residual information regarding the Hitomezashi loop length, loop count, as well as possible homology classes of such loops. Special attention is paid to toroidal Hitomezashi patterns that are symmetric with respect to the diagonal <span><math><mi>x</mi><mo>=</mo><mi>y</mi></math></span>, where we establish a novel connection between Hitomezashi and knot theory.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114231"},"PeriodicalIF":0.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003625/pdfft?md5=8878c11c7ff09a39b29f9d80243aab95&pid=1-s2.0-S0012365X24003625-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Ramsey number of the double star 关于双星的拉姆齐数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-30 DOI: 10.1016/j.disc.2024.114227
Freddy Flores Dubó, Maya Stein
{"title":"On the Ramsey number of the double star","authors":"Freddy Flores Dubó,&nbsp;Maya Stein","doi":"10.1016/j.disc.2024.114227","DOIUrl":"10.1016/j.disc.2024.114227","url":null,"abstract":"<div><p>The double star <span><math><mi>S</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is obtained from joining the centres of a star with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> leaves and a star with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> leaves. We give a short proof of a new upper bound on the two-colour Ramsey number of <span><math><mi>S</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> which holds for all <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mfrac><mrow><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mn>3</mn><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Our result implies that for all positive <em>m</em>, the Ramsey number of the double star <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> is at most <span><math><mo>⌈</mo><mn>4.275</mn><mi>m</mi><mo>⌉</mo><mo>+</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114227"},"PeriodicalIF":0.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003583/pdfft?md5=141f97279491e2ead07751cfa50dfe96&pid=1-s2.0-S0012365X24003583-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotically good LCD 2-quasi-abelian codes over finite fields 有限域上渐近良好的 LCD 2-类阿贝尔码
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-29 DOI: 10.1016/j.disc.2024.114224
Guanghui Zhang , Liren Lin , Xuemei Liu
{"title":"Asymptotically good LCD 2-quasi-abelian codes over finite fields","authors":"Guanghui Zhang ,&nbsp;Liren Lin ,&nbsp;Xuemei Liu","doi":"10.1016/j.disc.2024.114224","DOIUrl":"10.1016/j.disc.2024.114224","url":null,"abstract":"<div><p>In this paper, we construct a class of linear complementary dual (LCD for short) 2-quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114224"},"PeriodicalIF":0.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003558/pdfft?md5=d75cfe8788325d2bba4c277d4bfdd968&pid=1-s2.0-S0012365X24003558-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved 2-distance coloring of planar graphs with maximum degree 5 最大阶数为 5 的平面图的改进型 2-距离着色
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-29 DOI: 10.1016/j.disc.2024.114225
Kengo Aoki
{"title":"Improved 2-distance coloring of planar graphs with maximum degree 5","authors":"Kengo Aoki","doi":"10.1016/j.disc.2024.114225","DOIUrl":"10.1016/j.disc.2024.114225","url":null,"abstract":"<div><p>A 2-distance <em>k</em>-coloring of a graph <em>G</em> is a proper <em>k</em>-coloring such that any two vertices at distance two or less get different colors. The 2-distance chromatic number of <em>G</em> is the minimum <em>k</em> such that <em>G</em> has a 2-distance <em>k</em>-coloring, denoted by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>17</mn></math></span> for every planar graph <em>G</em> with maximum degree <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>5</mn></math></span>, which improves a former bound <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>18</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114225"},"PeriodicalIF":0.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X2400356X/pdfft?md5=5c41865d9f4804580262cd339c332dbd&pid=1-s2.0-S0012365X2400356X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信