Discrete Mathematics最新文献

筛选
英文 中文
Further results on large sets plus of partitioned incomplete Latin squares 分区不完全拉丁正方形大集合加的进一步结果
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-19 DOI: 10.1016/j.disc.2024.114215
{"title":"Further results on large sets plus of partitioned incomplete Latin squares","authors":"","doi":"10.1016/j.disc.2024.114215","DOIUrl":"10.1016/j.disc.2024.114215","url":null,"abstract":"<div><p>In this paper, we continue to study the existence of large sets plus of partitioned incomplete Latin squares of type <span><math><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><mi>u</mi><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msup></math></span>, denoted by LSPILS<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><mi>u</mi><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span>. We almost solve the existence of an LSPILS<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><mi>u</mi><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span> for any integer <span><math><mi>g</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>u</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> with some possible exceptions.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003467/pdfft?md5=a7bdcbba4d2ea5621caf6949ac6fa294&pid=1-s2.0-S0012365X24003467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turán numbers of general star forests in hypergraphs 超图中一般星形林的图兰数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-19 DOI: 10.1016/j.disc.2024.114219
{"title":"Turán numbers of general star forests in hypergraphs","authors":"","doi":"10.1016/j.disc.2024.114219","DOIUrl":"10.1016/j.disc.2024.114219","url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a family of <em>r</em>-uniform hypergraphs, and let <em>H</em> be an <em>r</em>-uniform hypergraph. Then <em>H</em> is called <span><math><mi>F</mi></math></span>-free if it does not contain any member of <span><math><mi>F</mi></math></span> as a subhypergraph. The Turán number of <span><math><mi>F</mi></math></span>, denoted by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the maximum number of hyperedges in an <span><math><mi>F</mi></math></span>-free <em>n</em>-vertex <em>r</em>-uniform hypergraph. Our current results are motivated by earlier results on Turán numbers of star forests and hypergraph star forests. In particular, Lidický et al. (2013) <span><span>[17]</span></span> determined the Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> of a star forest <em>F</em> for sufficiently large <em>n</em>. Recently, Khormali and Palmer (2022) <span><span>[13]</span></span> generalized the above result to three different well-studied hypergraph settings (the expansions of a graph, linear hypergraphs and Berge hypergraphs), but restricted to the case that all stars in the hypergraph star forests are identical. We further generalize these results to general star forests in hypergraphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003509/pdfft?md5=f55a8417dd66a400951a48477694c9f9&pid=1-s2.0-S0012365X24003509-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The VC dimension of quadratic residues in finite fields 有限域中二次残差的 VC 维数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-16 DOI: 10.1016/j.disc.2024.114192
{"title":"The VC dimension of quadratic residues in finite fields","authors":"","doi":"10.1016/j.disc.2024.114192","DOIUrl":"10.1016/j.disc.2024.114192","url":null,"abstract":"<div><p>We study the Vapnik–Chervonenkis (VC) dimension of the set of quadratic residues (i.e. squares) in finite fields, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, when considered as a subset of the additive group. We conjecture that as <span><math><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>, the squares have the maximum possible VC-dimension, viz. <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>q</mi></math></span>. We prove, using the Weil bound for multiplicative character sums, that the VC-dimension is <span><math><mo>⩾</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>q</mi></math></span>. We also provide numerical evidence for our conjectures. The results generalize to multiplicative subgroups <span><math><mi>Γ</mi><mo>⊆</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math></span> of bounded index.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003236/pdfft?md5=cb2593a83f33c425a70d3257432c949e&pid=1-s2.0-S0012365X24003236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the direct and inverse zero-sum problems over non-split metacyclic group 关于非分裂元环群上的直接和逆零和问题
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-15 DOI: 10.1016/j.disc.2024.114213
{"title":"On the direct and inverse zero-sum problems over non-split metacyclic group","authors":"","doi":"10.1016/j.disc.2024.114213","DOIUrl":"10.1016/j.disc.2024.114213","url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>=</mo><mrow><mo>〈</mo><mi>y</mi><mo>,</mo><mi>x</mi><mo>|</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>x</mi><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>〉</mo></mrow></math></span> be the non-split metacyclic group with <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><mn>2</mn><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>ℓ</mi><mo>≢</mo><mo>±</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>+</mo><mn>1</mn><mspace></mspace><mo>(</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><mn>2</mn><mi>n</mi><mo>)</mo></math></span>. In this paper, we obtain the exact values of small Davenport constant <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, Gao constant <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <em>η</em>-constant <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and Erdős-Ginzburg-Ziv constant <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Additionally, we study the associated inverse problems on <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In 2003, Gao conjectured that <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mtext>exp</mtext><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any finite group <em>G</em>. In 2005, Gao and Zhuang conjectured that <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo></math></span> for any finite group <em>G</em>. As a result, we confirm the two conjectures for non-split metacyclic groups.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cut-down de Bruijn sequences 删减的德布鲁因序列
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-14 DOI: 10.1016/j.disc.2024.114204
{"title":"Cut-down de Bruijn sequences","authors":"","doi":"10.1016/j.disc.2024.114204","DOIUrl":"10.1016/j.disc.2024.114204","url":null,"abstract":"<div><p>A cut-down de Bruijn sequence is a cyclic string of length <em>L</em>, where <span><math><mn>1</mn><mo>≤</mo><mi>L</mi><mo>≤</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, such that every substring of length <em>n</em> appears <em>at most</em> once. Etzion [<em>Theor. Comp. Sci</em> 44 (1986)] introduced an algorithm to construct binary cut-down de Bruijn sequences requiring <span><math><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> simple <em>n</em>-bit operations per symbol generated. In this paper, we simplify the algorithm and improve the running time to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> time per symbol generated using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space. Additionally, we develop the first successor-rule approach for constructing a binary cut-down de Bruijn sequence by leveraging recent ranking/unranking algorithms for fixed-density Lyndon words. Finally, we develop an algorithm to generate cut-down de Bruijn sequences for <span><math><mi>k</mi><mo>&gt;</mo><mn>2</mn></math></span> that runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> time per symbol using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space after some initialization.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003352/pdfft?md5=dc65cfb8e32bb465a8c99176a8b278b0&pid=1-s2.0-S0012365X24003352-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes 复杂广义称重矩阵概览与量子纠错码的构建
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-13 DOI: 10.1016/j.disc.2024.114201
{"title":"A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes","authors":"","doi":"10.1016/j.disc.2024.114201","DOIUrl":"10.1016/j.disc.2024.114201","url":null,"abstract":"<div><p>Some combinatorial designs, such as Hadamard matrices, have been extensively researched and are familiar to readers across the spectrum of Science and Engineering. They arise in diverse fields such as cryptography, communication theory, and quantum computing. Objects like this also lend themselves to compelling mathematics problems, such as the Hadamard conjecture. However, complex generalized weighing matrices, which generalize Hadamard matrices, have not received anything like the same level of scrutiny. Motivated by an application to the construction of quantum error-correcting codes, which we outline in the latter sections of this paper, we survey the existing literature on complex generalized weighing matrices. We discuss and extend upon the known existence conditions and constructions, and compile known existence results for small parameters. Using these matrices we construct Hermitian self orthogonal codes over finite fields of square order, and consequently some interesting quantum codes are constructed to demonstrate the value of complex generalized weighing matrices.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003327/pdfft?md5=529c4d63c13ac71c4519138cdb73c99c&pid=1-s2.0-S0012365X24003327-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Terwilliger algebras of Odd graphs and Doubled Odd graphs 奇数图和双倍奇数图的特尔维利格代数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-13 DOI: 10.1016/j.disc.2024.114216
{"title":"The Terwilliger algebras of Odd graphs and Doubled Odd graphs","authors":"","doi":"10.1016/j.disc.2024.114216","DOIUrl":"10.1016/j.disc.2024.114216","url":null,"abstract":"<div><p>For an integer <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><mi>S</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Denote by <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> the Doubled Odd graph on <em>S</em> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>∪</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. By folding this graph, one can obtain a new graph called Odd graph <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> with vertex set <span><math><mi>X</mi><mo>:</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>S</mi></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In this paper, we shall study the Terwilliger algebras of <span><math><mn>2</mn><mo>.</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We first consider the case of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. With respect to any fixed vertex <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>X</mi></math></span>, let <span><math><mi>A</mi><mo>:</mo><mo>=</mo><mi>A</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> denote the centralizer algebra of the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in the automorphism group of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, and <span><math><mi>T</mi><mo>:</mo><mo>=</mo><mi>T</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> the Terwilliger algebra of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. For the algebras <span><math><mi>A</mi></math></span> and <span><math><mi>T</mi></math></span>: (i) we construct a basis of <span><math><mi>A</mi></math></span> by the stabilizer of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> acting on <span><math><mi>X</mi><mo>×</mo><mi>X</mi></math></span>, compute its dimension and show that <span><math><mi>A</mi><mo>=</mo><mi>T</mi></math></span>; (ii) for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>, we give all the isomorphism classes of irreducible <span><math><mi>T</mi></math></span>-modu","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003479/pdfft?md5=8c465dc78658321c3a6c455f5d3877fe&pid=1-s2.0-S0012365X24003479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New methods for constructing AEAQEC codes 构建 AEAQEC 代码的新方法
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-12 DOI: 10.1016/j.disc.2024.114202
{"title":"New methods for constructing AEAQEC codes","authors":"","doi":"10.1016/j.disc.2024.114202","DOIUrl":"10.1016/j.disc.2024.114202","url":null,"abstract":"<div><p>Recently, Liu and Liu gave the Singleton bound for pure asymmetric entanglement-assisted quantum error-correcting (AEAQEC) codes. They constructed three new families of AQEAEC codes by means of Vandermonde matrices, generalized Reed-Solomon (GRS) codes and cyclic codes. In this paper, we first exhibit the Singleton bound for any AEAQEC codes. Then we construct AEAQEC codes by two distinct constacyclic codes. By means of repeated-root cyclic codes, we construct new AEAQEC MDS codes. In addition, our methods allow for easily calculating the dimensions, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> and the number <em>c</em> of pre-shared maximally entangled states of AEAQEC codes.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ramsey numbers and a general Erdős-Rogers function 拉姆齐数和一般厄尔多斯-罗杰斯函数
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-12 DOI: 10.1016/j.disc.2024.114203
{"title":"Ramsey numbers and a general Erdős-Rogers function","authors":"","doi":"10.1016/j.disc.2024.114203","DOIUrl":"10.1016/j.disc.2024.114203","url":null,"abstract":"<div><p>Given a graph <em>F</em>, let <span><math><mi>L</mi><mo>(</mo><mi>F</mi><mo>)</mo></math></span> be a fixed finite family of graphs consisting of a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> and some bipartite graphs relying on an <em>s</em>-partite subgraph partitioning of edges of <em>F</em>. Define <span><math><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-graph by an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> bipartite graph with <span><math><mi>n</mi><mo>≥</mo><mi>m</mi></math></span> such that all vertices in the part of size <em>n</em> have degree <em>a</em> and all vertices in the part of size <em>m</em> have degree <span><math><mi>b</mi><mo>≥</mo><mi>a</mi></math></span>. In this paper, building upon the work of Janzer and Sudakov (2023<sup>+</sup>) and combining with the idea of Conlon, Mattheus, Mubayi and Verstraëte (2023<sup>+</sup>) we obtain that for each <span><math><mi>s</mi><mo>≥</mo><mn>2</mn></math></span>, if there exists an <span><math><mi>L</mi><mo>(</mo><mi>F</mi><mo>)</mo></math></span>-free <span><math><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-graph, then there exists an <em>F</em>-free graph <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> with at least <span><math><mi>n</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>−</mo><mn>1</mn></math></span> vertices in which every vertex subset of size <span><math><mi>m</mi><msup><mrow><mi>a</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>⁡</mo><mo>(</mo><mi>a</mi><mi>n</mi><mo>)</mo></math></span> contains a copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>. As applications, we obtain some upper bounds of general Erdős-Rogers functions for some special graphs of <em>F</em>. Moreover, we obtain the multicolor Ramsey numbers <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>;</mo><mi>t</mi><mo>)</mo><mo>=</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mfrac><mrow><mn>3</mn><mi>k</mi></mrow><mrow><mn>7</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>;</mo><mi>t</mi><mo>)</mo><mo>=</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mfrac><mrow><mi>k</mi></mr","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A complete classification of edge-primitive graphs of valency 6 价数为 6 的边先验图的完整分类
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2024-08-12 DOI: 10.1016/j.disc.2024.114205
{"title":"A complete classification of edge-primitive graphs of valency 6","authors":"","doi":"10.1016/j.disc.2024.114205","DOIUrl":"10.1016/j.disc.2024.114205","url":null,"abstract":"<div><p>In 2020, the first author and Pan proved that every edge-primitive graph of valency 6 is 2-arc-transitive, and except the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>6</mn><mo>,</mo><mn>6</mn></mrow></msub></math></span>, the automorphism group is almost simple, and they determined such graphs having a solvable edge stabilizer. The nonsolvable edge stabilizer case is settled in this work, which leads to a complete classification of edge-primitive graphs of valency 6.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信