{"title":"A note on clique immersion of strong product graphs","authors":"Chuanshu Wu, Zijian Deng","doi":"10.1016/j.disc.2024.114237","DOIUrl":"10.1016/j.disc.2024.114237","url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span> be graphs, and <span><math><mi>G</mi><mo>⁎</mo><mi>H</mi></math></span> represent a specific graph product of <em>G</em> and <em>H</em>. Define <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> as the largest <em>t</em> for which <em>G</em> contains a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-immersion. Collins, Heenehan, and McDonald posed the question: given <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> and <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>r</mi></math></span>, how large can <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo></math></span> be? They conjectured <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mi>r</mi></math></span> when ⁎ denotes the strong product. In this note, we affirm that the conjecture holds for graphs with certain immersions, in particular when <em>H</em> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> as a subgraph. As a consequence we also get an alternative argument for a result of Guyer and McDonald, showing that the line graphs of constant-multiplicity multigraphs satisfy the conjecture originally proposed by Abu-Khzam and Langston.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114237"},"PeriodicalIF":0.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003686/pdfft?md5=2175b8b68439085105021d9c5e79d193&pid=1-s2.0-S0012365X24003686-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Csilla Bujtás , Akbar Davoodi , Laihao Ding , Ervin Győri , Zsolt Tuza , Donglei Yang
{"title":"Covering the edges of a graph with triangles","authors":"Csilla Bujtás , Akbar Davoodi , Laihao Ding , Ervin Győri , Zsolt Tuza , Donglei Yang","doi":"10.1016/j.disc.2024.114226","DOIUrl":"10.1016/j.disc.2024.114226","url":null,"abstract":"<div><p>In a graph <em>G</em>, let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum size of a set of edges and triangles that cover all edges of <em>G</em>, and let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study the relationship between <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and establish a sharp upper bound on <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also prove Nordhaus-Gaddum-type inequalities for the considered invariants.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114226"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003571/pdfft?md5=fe63daa1972dde10572b653b88b81a86&pid=1-s2.0-S0012365X24003571-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2-Connected spanning subgraphs of circuit graphs","authors":"Atsuhiro Nakamoto , Kenta Ozeki , Daiki Takahashi","doi":"10.1016/j.disc.2024.114228","DOIUrl":"10.1016/j.disc.2024.114228","url":null,"abstract":"<div><p>Kaneko et al. <span><span>[12]</span></span> proved that every 3-connected planar graph <em>G</em> has a 2-connected spanning subgraph <em>K</em> such that <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, and they also conjectured that the constant of the estimation can be improved to <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>2</mn><mo>)</mo></math></span> when <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mn>8</mn></math></span>. To prove the result, they showed the statement for a circuit graph, which is obtained from a 3-connected planar graph by deleting one vertex, and the theorem is best possible for circuit graphs. In this paper, we give a characterization of a circuit graph <em>G</em> each of whose 2-connected spanning subgraph <em>K</em> requires <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and then we improve the bound for the 3-connected planar case.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114228"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003595/pdfft?md5=6b926c0cbdadb1ca5769e66c3d298e03&pid=1-s2.0-S0012365X24003595-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Degree powers and number of stars in graphs with a forbidden broom","authors":"Dániel Gerbner","doi":"10.1016/j.disc.2024.114232","DOIUrl":"10.1016/j.disc.2024.114232","url":null,"abstract":"<div><p>Given a graph <em>G</em> with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and a positive integer <em>r</em>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. We denote by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest value of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> among <em>n</em>-vertex <em>F</em>-free graphs <em>G</em>, and by <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest number of stars <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <em>n</em>-vertex <em>F</em>-free graphs. The <em>broom</em> <span><math><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> is the graph obtained from an <em>ℓ</em>-vertex path by adding <em>s</em> new leaves connected to a penultimate vertex <em>v</em> of the path.</p><p>We determine <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>, proving a conjecture of Lan, Liu, Qin and Shi. We also determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114232"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003637/pdfft?md5=f6743e7fcba7f41401daef264d1fc9cb&pid=1-s2.0-S0012365X24003637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eun-Kyung Cho , Ilkyoo Choi , Hyemin Kwon , Boram Park
{"title":"Brooks-type theorems for relaxations of square colorings","authors":"Eun-Kyung Cho , Ilkyoo Choi , Hyemin Kwon , Boram Park","doi":"10.1016/j.disc.2024.114233","DOIUrl":"10.1016/j.disc.2024.114233","url":null,"abstract":"<div><p>The following relaxation of proper coloring the square of a graph was recently introduced: for a positive integer <em>h</em>, the <em>proper h-conflict-free chromatic number</em> of a graph <em>G</em>, denoted <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum <em>k</em> such that <em>G</em> has a proper <em>k</em>-coloring where every vertex <em>v</em> has <span><math><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>}</mo></math></span> colors appearing exactly once on its neighborhood. Caro, Petruševski, and Škrekovski put forth a Brooks-type conjecture: if <em>G</em> is a graph with <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. The best known result regarding the conjecture is <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, which is implied by a result of Pach and Tardos. We improve upon the aforementioned result for all <em>h</em>, and also enlarge the class of graphs for which the conjecture is known to be true.</p><p>Our main result is the following: for a graph <em>G</em>, if <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>h</mi><mo>+</mo><mn>2</mn></math></span>, then <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>; this is tight up to the additive term as we explicitly construct infinitely many graphs <em>G</em> with <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>pcf</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>h</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that the conjecture is true for chordal graphs, and obtain partial results for quasi-line graphs and claw-free graphs. Our main result also improves upon a Brooks-type result for <em>h</em>-dynamic coloring.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114233"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003649/pdfft?md5=d91aefd107404a4f8392a7adc9d9507d&pid=1-s2.0-S0012365X24003649-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tara Abrishami , Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl
{"title":"Induced subgraphs and tree decompositions VI. Graphs with 2-cutsets","authors":"Tara Abrishami , Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl","doi":"10.1016/j.disc.2024.114195","DOIUrl":"10.1016/j.disc.2024.114195","url":null,"abstract":"<div><p>This paper continues a series of papers investigating the following question: which hereditary graph classes have bounded treewidth? We call a graph <em>t-clean</em> if it does not contain as an induced subgraph the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, subdivisions of a <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall, and line graphs of subdivisions of a <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall. It is known that graphs with bounded treewidth must be <em>t</em>-clean for some <em>t</em>; however, it is not true that every <em>t</em>-clean graph has bounded treewidth. In this paper, we show that three types of cutsets, namely clique cutsets, 2-cutsets, and 1-joins, interact well with treewidth and with each other, so graphs that are decomposable by these cutsets into basic classes of bounded treewidth have bounded treewidth. We apply this result to two hereditary graph classes, the class of (<span><math><mi>I</mi><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, wheel)-free graphs and the class of graphs with no cycle with a unique chord. These classes were previously studied and decomposition theorems were obtained for both classes. Our main results are that <em>t</em>-clean (<span><math><mi>I</mi><mi>S</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, wheel)-free graphs have bounded treewidth and that <em>t</em>-clean graphs with no cycle with a unique chord have bounded treewidth.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114195"},"PeriodicalIF":0.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003261/pdfft?md5=e8262a89abc8297f51785b66fc0ac9c4&pid=1-s2.0-S0012365X24003261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toroidal Hitomezashi patterns","authors":"Qiuyu Ren , Shengtong Zhang","doi":"10.1016/j.disc.2024.114231","DOIUrl":"10.1016/j.disc.2024.114231","url":null,"abstract":"<div><p>Extending a proposal of Defant and Kravitz (2024) <span><span>[2]</span></span>, we define Hitomezashi patterns and loops on a torus and provide several structural results for such loops. For a given pattern, our main theorems give optimal residual information regarding the Hitomezashi loop length, loop count, as well as possible homology classes of such loops. Special attention is paid to toroidal Hitomezashi patterns that are symmetric with respect to the diagonal <span><math><mi>x</mi><mo>=</mo><mi>y</mi></math></span>, where we establish a novel connection between Hitomezashi and knot theory.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114231"},"PeriodicalIF":0.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003625/pdfft?md5=8878c11c7ff09a39b29f9d80243aab95&pid=1-s2.0-S0012365X24003625-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Ramsey number of the double star","authors":"Freddy Flores Dubó, Maya Stein","doi":"10.1016/j.disc.2024.114227","DOIUrl":"10.1016/j.disc.2024.114227","url":null,"abstract":"<div><p>The double star <span><math><mi>S</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is obtained from joining the centres of a star with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> leaves and a star with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> leaves. We give a short proof of a new upper bound on the two-colour Ramsey number of <span><math><mi>S</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> which holds for all <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mfrac><mrow><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mn>3</mn><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Our result implies that for all positive <em>m</em>, the Ramsey number of the double star <span><math><mi>S</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> is at most <span><math><mo>⌈</mo><mn>4.275</mn><mi>m</mi><mo>⌉</mo><mo>+</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114227"},"PeriodicalIF":0.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003583/pdfft?md5=141f97279491e2ead07751cfa50dfe96&pid=1-s2.0-S0012365X24003583-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotically good LCD 2-quasi-abelian codes over finite fields","authors":"Guanghui Zhang , Liren Lin , Xuemei Liu","doi":"10.1016/j.disc.2024.114224","DOIUrl":"10.1016/j.disc.2024.114224","url":null,"abstract":"<div><p>In this paper, we construct a class of linear complementary dual (LCD for short) 2-quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114224"},"PeriodicalIF":0.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003558/pdfft?md5=d75cfe8788325d2bba4c277d4bfdd968&pid=1-s2.0-S0012365X24003558-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved 2-distance coloring of planar graphs with maximum degree 5","authors":"Kengo Aoki","doi":"10.1016/j.disc.2024.114225","DOIUrl":"10.1016/j.disc.2024.114225","url":null,"abstract":"<div><p>A 2-distance <em>k</em>-coloring of a graph <em>G</em> is a proper <em>k</em>-coloring such that any two vertices at distance two or less get different colors. The 2-distance chromatic number of <em>G</em> is the minimum <em>k</em> such that <em>G</em> has a 2-distance <em>k</em>-coloring, denoted by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>17</mn></math></span> for every planar graph <em>G</em> with maximum degree <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>5</mn></math></span>, which improves a former bound <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>18</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114225"},"PeriodicalIF":0.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X2400356X/pdfft?md5=5c41865d9f4804580262cd339c332dbd&pid=1-s2.0-S0012365X2400356X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}