{"title":"On Steinerberger curvature and graph distance matrices","authors":"Wei-Chia Chen , Mao-Pei Tsui","doi":"10.1016/j.disc.2025.114475","DOIUrl":"10.1016/j.disc.2025.114475","url":null,"abstract":"<div><div>Steinerberger proposed a notion of curvature on graphs involving the graph distance matrix (J. Graph Theory, 2023). We show that nonnegative curvature is almost preserved under three graph operations. We characterize the distance matrix and its null space after adding an edge between two graphs. Let <em>D</em> be the graph distance matrix and <strong>1</strong> be the all-one vector. We provide a way to construct graphs so that the linear system <span><math><mi>D</mi><mi>x</mi><mo>=</mo><mn>1</mn></math></span> does not have a solution.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114475"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proof of a conjecture on connectivity keeping odd paths in k-connected bipartite graphs","authors":"Qing Yang, Yingzhi Tian","doi":"10.1016/j.disc.2025.114476","DOIUrl":"10.1016/j.disc.2025.114476","url":null,"abstract":"<div><div>Luo, Tian and Wu (2022) conjectured that for any tree <em>T</em> with bipartition <em>X</em> and <em>Y</em>, every <em>k</em>-connected bipartite graph <em>G</em> with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mi>t</mi></math></span>, where <span><math><mi>t</mi><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mo>|</mo><mi>X</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>Y</mi><mo>|</mo><mo>}</mo></math></span>, contains a tree <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≅</mo><mi>T</mi></math></span> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> is still <em>k</em>-connected. Note that <span><math><mi>t</mi><mo>=</mo><mo>⌈</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> when the tree <em>T</em> is the path with order <em>m</em>. In this paper, we prove that every <em>k</em>-connected bipartite graph <em>G</em> with minimum degree at least <span><math><mi>k</mi><mo>+</mo><mo>⌈</mo><mfrac><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> contains a path <em>P</em> of order <em>m</em> such that <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> remains <em>k</em>-connected. This shows that the conjecture is true for paths with odd order. For paths with even order, the minimum degree bound in this paper is the bound in the conjecture plus one.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114476"},"PeriodicalIF":0.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Induced saturation for complete bipartite posets","authors":"Dingyuan Liu","doi":"10.1016/j.disc.2025.114462","DOIUrl":"10.1016/j.disc.2025.114462","url":null,"abstract":"<div><div>Given <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>, a complete bipartite poset <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is a poset whose Hasse diagram consists of <em>s</em> pairwise incomparable vertices in the upper layer and <em>t</em> pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> is called induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated if <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mo>⊆</mo><mo>)</mo></math></span> contains no induced copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, whereas adding any set from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup><mo>﹨</mo><mi>F</mi></math></span> to <span><math><mi>F</mi></math></span> creates an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>. Let <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> denote the smallest size of an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span>. It was conjectured that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> is superlinear in <em>n</em> for certain values of <em>s</em> and <em>t</em>. In this paper, we show that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all fixed <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>. Moreover, we prove a linear lower bound on <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> for a large class of posets <span><math><mi>P</mi></math></span>, particularly for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> with <span><math><mi>s</mi><mo>∈</mo><mi>N</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114462"},"PeriodicalIF":0.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Ramsey numbers for certain large trees of order n with maximum degree at most n − 6 versus the wheel of order nine","authors":"Thomas Britz , Zhi Yee Chng , Kok Bin Wong","doi":"10.1016/j.disc.2025.114461","DOIUrl":"10.1016/j.disc.2025.114461","url":null,"abstract":"<div><div>For a fixed positive integer <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, the Ramsey numbers <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> are determined for the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of sufficiently large order <em>n</em> and maximum degree <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> for each tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of order <span><math><mi>n</mi><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>+</mo><mn>2</mn></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span> is even, for the case when <span><math><mi>m</mi><mo>=</mo><mn>8</mn></math></span> and <em>n</em> is sufficiently large.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114461"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A large minimal blocker for 123-avoiding permutations","authors":"Yaroslav Shitov","doi":"10.1016/j.disc.2025.114463","DOIUrl":"10.1016/j.disc.2025.114463","url":null,"abstract":"<div><div>A set <span><math><mi>B</mi><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo><mo>×</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> is a <em>blocker of</em> a subset <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> if every permutation <span><math><mi>σ</mi><mo>∈</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> allows an index <em>i</em> with <span><math><mo>(</mo><mi>i</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>B</mi></math></span>. Bennett, Brualdi and Cao conjectured that <span><math><mo>⌈</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌉</mo><mo>⋅</mo><mo>⌊</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> is an upper bound for the sizes of the inclusion minimal blockers of the family of 123-<em>avoiding</em> permutations, which are those <span><math><mi>σ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for which <span><math><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> has no increasing subsequence of the length three. We show that<span><span><span><math><mi>B</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></m","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114463"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Several classes of minimal linear codes from vectorial Boolean functions and p-ary functions","authors":"Wengang Jin, Kangquan Li, Longjiang Qu","doi":"10.1016/j.disc.2025.114464","DOIUrl":"10.1016/j.disc.2025.114464","url":null,"abstract":"<div><div>Minimal linear codes are widely used in secret sharing schemes and secure two-party computation. Most of the minimal linear codes constructed satisfy the Ashikhmin-Barg (AB for short) condition. However, up to now, only a small classes of minimal linear codes violating the AB condition have been presented in the literature. In this paper, we are devoted to constructing more classes of minimal linear codes over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> that violate the AB condition and have new parameters. First, we provide several classes of minimal linear codes violating the AB condition from vectorial Boolean functions and determine their weight distributions. Then, we obtain new <em>p</em>-ary functions over the finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> with <em>p</em> an odd prime and determine their Walsh spectrum distributions. Finally, the resulted <em>p</em>-ary functions are employed to construct several classes of linear codes with two to four weights. In these codes, one class is minimal and violates the AB condition, and two classes satisfy the AB condition.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114464"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Induced matching vs edge open packing: Trees and product graphs","authors":"Boštjan Brešar , Tanja Dravec , Jaka Hedžet , Babak Samadi","doi":"10.1016/j.disc.2025.114458","DOIUrl":"10.1016/j.disc.2025.114458","url":null,"abstract":"<div><div>Given a graph <em>G</em>, the maximum size of an induced subgraph of <em>G</em> each component of which is a star is called the edge open packing number, <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em>. Similarly, the maximum size of an induced subgraph of <em>G</em> each component of which is the star <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span> is the induced matching number, <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of <em>G</em>. While the inequality <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> clearly holds for all graphs <em>G</em>, we provide a structural characterization of those trees that attain the equality. We prove that the induced matching number of the lexicographic product <span><math><mi>G</mi><mo>∘</mo><mi>H</mi></math></span> of arbitrary two graphs <em>G</em> and <em>H</em> equals <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. By similar techniques, we prove sharp lower and upper bounds on the edge open packing number of the lexicographic product of graphs, which in particular lead to NP-hardness results in triangular graphs for both invariants studied in this paper. For the direct product <span><math><mi>G</mi><mo>×</mo><mi>H</mi></math></span> of two graphs we provide lower bounds on <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>×</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>×</mo><mi>H</mi><mo>)</mo></math></span>, both of which are widely sharp. We also present sharp lower bounds for both invariants in the Cartesian and the strong product of two graphs. Finally, we consider the edge open packing number in hypercubes establishing the exact values of <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>e</mi></mrow><mrow><mi>o</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> when <em>n</em> is a power of 2, and present a closed formula for the induced matching number of the rooted product of arbitrary two graphs over an arbitrary root vertex.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114458"},"PeriodicalIF":0.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On HV-neighborhood group constant sum array","authors":"Karthik S, Krishnan Paramasivam","doi":"10.1016/j.disc.2025.114456","DOIUrl":"10.1016/j.disc.2025.114456","url":null,"abstract":"<div><div>A HV-neighborhood group constant sum array with <em>δ</em> distance, is an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> array, whose entries are all non-zero elements of an additive Abelian group Γ such that the sum of group elements assigned to the <em>δ</em>-neighborhood of any cell <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span> in an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> array is a unique element <span><math><mi>μ</mi><mo>∈</mo><mi>Γ</mi></math></span>, where the <em>δ</em>-neighborhood of a cell <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span> in an <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> array is the set of cells that are at most <em>δ</em> distance in the right, left, up, and down from <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>, excluding the cell <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>. The element <em>μ</em> is the neighborhood constant sum. In this article, we prove some necessary conditions for the existence of HV-neighborhood group constant sum arrays with <em>δ</em> distance. In addition, if <span><math><mi>δ</mi><mo>=</mo><mn>1</mn></math></span>, a method to construct HV-neighborhood group constant sum arrays and a characterization of HV-neighborhood Klein four-group constant sum arrays are given.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114456"},"PeriodicalIF":0.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Q. Dinh , Bhanu Pratap Yadav , Bac T. Nguyen , Ashish Kumar Upadhyay
{"title":"F2F2[u2]F2[u3]-additive cyclic codes are asymptotically good","authors":"Hai Q. Dinh , Bhanu Pratap Yadav , Bac T. Nguyen , Ashish Kumar Upadhyay","doi":"10.1016/j.disc.2025.114459","DOIUrl":"10.1016/j.disc.2025.114459","url":null,"abstract":"<div><div>In this paper, we construct a class of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes generated by 3-tuples of polynomials, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is the binary field, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>) and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mn>0</mn></math></span>). We provide their algebraic structure and show that generator matrices can be obtained for all codes of this class. Using a random Bernoulli variable, we investigate the asymptotic properties in this class of codes. Furthermore, let <span><math><mn>0</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>1</mn></math></span> be a real number and <span><math><mi>k</mi><mo>,</mo><mi>l</mi></math></span> and <em>t</em> be pairwise co-prime positive odd integers such that the entropy at <span><math><mfrac><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi><mo>)</mo><mi>δ</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> is less than <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, we prove that the relative minimum homogeneous distances converge to <em>δ</em>, and the rates of the random codes converge to <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mi>l</mi><mo>+</mo><mi>t</mi></mrow></mfrac></math></span>. Consequently, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>]</mo></math></span>-additive cyclic codes are asymptotically good.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114459"},"PeriodicalIF":0.7,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Path eccentricity of k-AT-free graphs and application on graphs with the consecutive ones property","authors":"Paul Bastide , Claire Hilaire , Eileen Robinson","doi":"10.1016/j.disc.2025.114449","DOIUrl":"10.1016/j.disc.2025.114449","url":null,"abstract":"<div><div>The central path problem is a variation on the single facility location problem. The aim is to find, in a given connected graph <em>G</em>, a path <em>P</em> minimizing its eccentricity, which is the maximal distance from <em>P</em> to any vertex of the graph <em>G</em>. The <em>path eccentricity</em> of <em>G</em> is the minimal eccentricity achievable over all paths in <em>G</em>. In this article we consider the path eccentricity of the class of the <em>k-AT-free graphs</em>. They are graphs in which any set of three vertices contains a pair for which every path between them uses at least one vertex of the closed neighborhood at distance <em>k</em> of the third. We prove that they have path eccentricity bounded by <em>k</em>.</div><div>Moreover, we answer a question of Gómez and Gutiérrez asking if there is a relation between path eccentricity and the <em>consecutive ones property</em>. The latter is the property for a binary matrix to admit a permutation of the rows placing the 1's consecutively on the columns. It was already known that graphs whose adjacency matrices have the consecutive ones property have path eccentricity at most 1, and that the same remains true when the augmented adjacency matrices (with ones on the diagonal) have the consecutive ones property. We generalize these results as follow. We study graphs whose adjacency matrices can be made to satisfy the consecutive ones property after changing some values on the diagonal, and show that those graphs have path eccentricity at most 2, by showing that they are 2-AT-free.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114449"},"PeriodicalIF":0.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}