{"title":"On the two-distance embedding in real Euclidean space of coherent configuration of type (2,2;3)","authors":"Eiichi Bannai , Etsuko Bannai , Chin-Yen Lee , Ziqing Xiang , Wei-Hsuan Yu","doi":"10.1016/j.disc.2024.114378","DOIUrl":"10.1016/j.disc.2024.114378","url":null,"abstract":"<div><div>Finding the maximum cardinality of a 2-distance set in Euclidean space is a classical problem in geometry. Lisoněk in 1997 constructed a maximum 2-distance set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> with 45 points. That 2-distance set constructed by Lisoněk has a distinguished structure of a coherent configuration of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>)</mo></math></span> and is embedded in two concentric spheres in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span>. In this paper we study whether there exists any other similar embedding of a coherent configuration of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>)</mo></math></span> as a 2-distance set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, without assuming any restriction on the size of the set. We prove that there exists no such example other than that of Lisoněk. The key ideas of our proof are as follows: (i) study the geometry of the embedding of the coherent configuration in Euclidean spaces and to derive diophantine equations coming from this embedding. (ii) solve diophantine equations with certain additional conditions of integrality of some parameters of the combinatorial structure by using the method of auxiliary equations.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114378"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A short note on Chen-Qian theorem","authors":"Jiyou Li, Yanghongbo Zhou","doi":"10.1016/j.disc.2024.114371","DOIUrl":"10.1016/j.disc.2024.114371","url":null,"abstract":"<div><div>We give a shorter proof of Chen-Qian Theorem from a perspective of abstract tube.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114371"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea C. Burgess , Robert D. Luther , David A. Pike
{"title":"Existential closure in uniform hypergraphs","authors":"Andrea C. Burgess , Robert D. Luther , David A. Pike","doi":"10.1016/j.disc.2024.114372","DOIUrl":"10.1016/j.disc.2024.114372","url":null,"abstract":"<div><div>For a positive integer <em>n</em>, a graph with at least <em>n</em> vertices is <em>n</em>-existentially closed or simply <em>n</em>-e.c. if for any set of vertices <em>S</em> of size <em>n</em> and any set <span><math><mi>T</mi><mo>⊆</mo><mi>S</mi></math></span>, there is a vertex <span><math><mi>x</mi><mo>∉</mo><mi>S</mi></math></span> adjacent to each vertex of <em>T</em> and no vertex of <span><math><mi>S</mi><mo>∖</mo><mi>T</mi></math></span>. We extend this concept to uniform hypergraphs, find necessary conditions for <em>n</em>-e.c. hypergraphs to exist, and prove that random uniform hypergraphs are asymptotically <em>n</em>-existentially closed. We then provide constructions to generate infinitely many examples of <em>n</em>-e.c. hypergraphs. In particular, these constructions use certain combinatorial designs as ingredients, adding to the ever-growing list of applications of designs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114372"},"PeriodicalIF":0.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on the random triadic process","authors":"Fang Tian , Yiting Yang","doi":"10.1016/j.disc.2024.114374","DOIUrl":"10.1016/j.disc.2024.114374","url":null,"abstract":"<div><div>For a fixed integer <span><math><mi>r</mi><mo>⩾</mo><mn>3</mn></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> be a random <em>r</em>-uniform hypergraph on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, where each <em>r</em>-set is an edge randomly and independently with probability <em>p</em>. The random <em>r</em>-generalized triadic process starts with a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> on the same vertex set, chooses two distinct vertices <em>x</em> and <em>y</em> uniformly at random and iteratively adds <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></math></span> as an edge if there is a subset <em>Z</em> with size <span><math><mi>r</mi><mo>−</mo><mn>2</mn></math></span>, denoted as <span><math><mi>Z</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span>, such that <span><math><mo>{</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi><mo>−</mo><mn>2</mn></math></span> are already edges in the graph and <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span> is an edge in <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if <span><math><mi>p</mi><mo>=</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for some positive constant <em>c</em>, with high probability, the triadic process reaches the complete graph when <span><math><mi>c</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and stops at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> edges when <span><math><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this note, we consider the ","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114374"},"PeriodicalIF":0.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Larger nearly orthogonal sets over finite fields","authors":"Ishay Haviv , Sam Mattheus , Aleksa Milojević , Yuval Wigderson","doi":"10.1016/j.disc.2024.114373","DOIUrl":"10.1016/j.disc.2024.114373","url":null,"abstract":"<div><div>For a field <span><math><mi>F</mi></math></span> and integers <em>d</em> and <em>k</em>, a set <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is called <em>k</em>-nearly orthogonal if its members are non-self-orthogonal and every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of <span><math><mi>A</mi></math></span> include an orthogonal pair. We prove that for every prime <em>p</em> there exists some <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span>, such that for every field <span><math><mi>F</mi></math></span> of characteristic <em>p</em> and for all integers <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>d</mi><mo>≥</mo><mi>k</mi></math></span>, there exists a <em>k</em>-nearly orthogonal set of at least <span><math><msup><mrow><mi>d</mi></mrow><mrow><mi>δ</mi><mo>⋅</mo><mi>k</mi><mo>/</mo><mi>log</mi><mo></mo><mi>k</mi></mrow></msup></math></span> vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. The size of the set is optimal up to the <span><math><mi>log</mi><mo></mo><mi>k</mi></math></span> term in the exponent. We further prove two extensions of this result. In the first, we provide a large set <span><math><mi>A</mi></math></span> of non-self-orthogonal vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that for every two subsets of <span><math><mi>A</mi></math></span> of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> each, some vector of one of the subsets is orthogonal to some vector of the other. In the second extension, every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of the produced set <span><math><mi>A</mi></math></span> include <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> pairwise orthogonal vectors for an arbitrary fixed integer <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi></math></span>. The proofs involve probabilistic and spectral arguments and the hypergraph container method.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114373"},"PeriodicalIF":0.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The number of perfect matchings in a brick","authors":"Fuliang Lu, Huali Pan","doi":"10.1016/j.disc.2024.114365","DOIUrl":"10.1016/j.disc.2024.114365","url":null,"abstract":"<div><div>A 3-connected graph is a <em>brick</em> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer.</div><div>Lucchesi and Murty conjectured that there exists a positive integer <em>N</em> such that for every <span><math><mi>n</mi><mo>≥</mo><mi>N</mi></math></span>, every brick on <em>n</em> vertices has at least <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> perfect matchings. We present an infinite family of bricks such that for each even integer <em>n</em> (<span><math><mi>n</mi><mo>></mo><mn>17</mn></math></span>), there exists a brick with <em>n</em> vertices in this family that contains at most <span><math><mo>⌈</mo><mn>0.625</mn><mi>n</mi><mo>⌉</mo></math></span> perfect matchings, showing that this conjecture fails.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114365"},"PeriodicalIF":0.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Binary [n,(n ± 1)/2] cyclic codes with good minimum distances from sequences","authors":"Xianhong Xie , Yaxin Zhao , Zhonghua Sun , Xiaobo Zhou","doi":"10.1016/j.disc.2024.114369","DOIUrl":"10.1016/j.disc.2024.114369","url":null,"abstract":"<div><div>Recently, binary cyclic codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>n</mi><mo>±</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>,</mo><mo>≥</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>]</mo></math></span> have been a hot topic since their minimum distances have a square-root bound. In this paper, we construct four classes of binary cyclic codes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> by using two families of sequences, and obtain some codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>n</mi><mo>±</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>,</mo><mo>≥</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>]</mo></math></span>. For <span><math><mi>m</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, the code <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> has parameters <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mo>]</mo></math></span>, and the code <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> has parameters <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mo>]</mo></math></span> if <span><math><mi>h</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>]</mo></math></span> if <span><math><mi>h</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114369"},"PeriodicalIF":0.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Properly colored C4→'s in arc-colored complete and complete bipartite digraphs","authors":"Mengyu Duan , Binlong Li , Shenggui Zhang","doi":"10.1016/j.disc.2024.114367","DOIUrl":"10.1016/j.disc.2024.114367","url":null,"abstract":"<div><div>A subdigraph of an arc-colored digraph is called <em>properly colored</em> if its every consecutive arcs have distinct colors. Let <em>D</em> be a digraph. For a digraph <em>H</em>, let <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> be the minimum number such that every arc-colored digraph <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> with <span><math><mi>c</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>≥</mo><mi>p</mi><mi>c</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> contains a properly colored copy of <em>H</em>, where <span><math><mi>c</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is the number of colors of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span>. Let <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> and <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> be the digraphs obtained from the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> respectively by replacing each edge <em>uv</em> with a pair of symmetric arcs <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>; and let <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span> be the directed cycle of length <em>k</em>. In this paper we determine <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>)</mo></math></span>, <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>)</mo></math></span> and characterize the corresponding extremal arc-colorings of digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114367"},"PeriodicalIF":0.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julien Bensmail , Hervé Hocquard , Clara Marcille , Sven Meyer
{"title":"On 1-2-3 Conjecture-like problems in 2-edge-coloured graphs","authors":"Julien Bensmail , Hervé Hocquard , Clara Marcille , Sven Meyer","doi":"10.1016/j.disc.2024.114368","DOIUrl":"10.1016/j.disc.2024.114368","url":null,"abstract":"<div><div>The well-known 1-2-3 Conjecture asks whether almost all graphs can have their edges labelled with <span><math><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> so that any two adjacent vertices are distinguished w.r.t. the sums of their incident labels. This conjecture has attracted increasing attention over the last years, with many of its aspects of interest being investigated by several authors. In early 2023, Keusch proposed a full solution to the 1-2-3 Conjecture.</div><div>Among other aspects of interest, several works introduced and studied ways of generalising such distinguishing labellings and the 1-2-3 Conjecture to structures more general than graphs, such as digraphs and hypergraphs. In the current work, we introduce two new variants for 2-edge-coloured graphs (having negative and positive edges), in which, through labellings, pairs of adjacent vertices are considered distinguished if and only if the differences between their incident positive and negative sums are different. The difference between the two variants we introduce is that, in one of them, this distinction must be met even when considering the absolute value of these differences.</div><div>We investigate how these two variants connect, and how they relate to the original problem. For each of the two variants, we also establish upper bounds on the minimum number of consecutive labels that suffice to design a distinguishing labelling of almost any 2-edge-coloured graph. This leads us to raise some conjectures on this minimum, which, as support, we prove for some families of 2-edge-coloured graphs. We also investigate weaker versions of these conjectures, where one can choose the polarity of the edges.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114368"},"PeriodicalIF":0.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The intersection density of non-quasiprimitive groups of degree 3p","authors":"Roghayeh Maleki , Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1016/j.disc.2024.114364","DOIUrl":"10.1016/j.disc.2024.114364","url":null,"abstract":"<div><div>The intersection density of a finite transitive group <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is the rational number <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> given by the ratio between the maximum size of a subset of <em>G</em> in which any two permutations agree on some elements of Ω and the order of a point stabilizer of <em>G</em>. In 2022, Meagher asked whether <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>}</mo></math></span> for any transitive group <em>G</em> of degree 3<em>p</em>, where <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span> is an odd prime. If <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is transitive such that <span><math><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>=</mo><mn>3</mn><mi>p</mi></math></span>, then it is known that <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> whenever (a) <em>G</em> is primitive or (b) <em>G</em> is imprimitive and admits a block of size <em>p</em> or at least two <em>G</em>-invariant partitions of Ω. In order to answer Meagher's question, it is left to analyze the intersection density of groups <em>G</em> admitting a unique <em>G</em>-invariant partition <span><math><mi>B</mi></math></span> whose blocks are of size 3. If <em>G</em> is such a group and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is the group induced by the action of <em>G</em> on <span><math><mi>B</mi></math></span>, then we denote the kernel of the canonical epimorphism <span><math><mi>G</mi><mo>→</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> by <span><math><mi>ker</mi><mo></mo><mo>(</mo><mi>G</mi><mo>→</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span>. The subgroup <span><math><mi>ker</mi><mo></mo><mo>(</mo><mi>G</mi><mo>→</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> is trivial if and only if <em>G</em> is quasiprimitive.</div><div>It is shown in this paper that the answer to Meagher's question is affirmative for non-quasiprimitive groups of degree 3<em>p</em>, unless possibly when <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span> is a Fermat prime and Ω admits a unique <em>G</em>-invariant partition <span><math><mi>B</mi></math></span> whose blocks are of size 3 such that the induced action <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is an almost simple group with socle equal to <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114364"},"PeriodicalIF":0.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}