{"title":"Turán number of complete bipartite graphs with bounded matching number","authors":"Huan Luo, Xiamiao Zhao, Mei Lu","doi":"10.1016/j.disc.2025.114552","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a family of graphs. A graph <em>G</em> is <span><math><mi>F</mi></math></span>-free if <em>G</em> does not contain any <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> as a subgraph. The Turán number <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the maximum number of edges in an <em>n</em>-vertex <span><math><mi>F</mi></math></span>-free graph. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> be the matching consisting of <em>s</em> independent edges. Recently, Alon and Frankl determined the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span>. Gerbner obtained several results about <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <em>F</em> satisfies certain properties. In this paper, we determine the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>ℓ</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <span><math><mi>s</mi><mo>,</mo><mi>n</mi></math></span> are large enough for every <span><math><mn>3</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>t</mi></math></span>. When <em>n</em> is large enough, we also show that <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> for <span><math><mi>s</mi><mo>≥</mo><mn>12</mn></math></span> and <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> when <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> and <em>s</em> is large enough.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114552"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001608","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a family of graphs. A graph G is -free if G does not contain any as a subgraph. The Turán number is the maximum number of edges in an n-vertex -free graph. Let be the matching consisting of s independent edges. Recently, Alon and Frankl determined the exact value of . Gerbner obtained several results about when F satisfies certain properties. In this paper, we determine the exact value of when are large enough for every . When n is large enough, we also show that for and when and s is large enough.
设F是一个图族。如果图G不包含任何F∈F作为子图,则图G是F自由的。Turán数字ex(n,F)是一个有n顶点的无F图的最大边数。设Ms为由s条独立边组成的匹配。最近,Alon和Frankl确定了ex(n,{Km,Ms+1})的确切值。Gerbner得到了当F满足某些性质时ex(n,{F,Ms+1})的几个结果。在本文中,我们确定了当s,n足够大且每3≤r≤t时ex(n,{K,t, m +1})的精确值。当n足够大时,我们还证明了当s≥12时ex(n,{K2,2,Ms+1})=n+(s2)−≤≤2s;当t≥3且s足够大时,ex(n,{K2,t,Ms+1})=n+(t−1)(s2)−≤≤2s;
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.