Turán number of complete bipartite graphs with bounded matching number

IF 0.7 3区 数学 Q2 MATHEMATICS
Huan Luo, Xiamiao Zhao, Mei Lu
{"title":"Turán number of complete bipartite graphs with bounded matching number","authors":"Huan Luo,&nbsp;Xiamiao Zhao,&nbsp;Mei Lu","doi":"10.1016/j.disc.2025.114552","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be a family of graphs. A graph <em>G</em> is <span><math><mi>F</mi></math></span>-free if <em>G</em> does not contain any <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> as a subgraph. The Turán number <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is the maximum number of edges in an <em>n</em>-vertex <span><math><mi>F</mi></math></span>-free graph. Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> be the matching consisting of <em>s</em> independent edges. Recently, Alon and Frankl determined the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span>. Gerbner obtained several results about <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <em>F</em> satisfies certain properties. In this paper, we determine the exact value of <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>ℓ</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo></math></span> when <span><math><mi>s</mi><mo>,</mo><mi>n</mi></math></span> are large enough for every <span><math><mn>3</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>t</mi></math></span>. When <em>n</em> is large enough, we also show that <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> for <span><math><mi>s</mi><mo>≥</mo><mn>12</mn></math></span> and <span><math><mtext>ex</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mi>n</mi><mo>+</mo><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span> when <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span> and <em>s</em> is large enough.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114552"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001608","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a family of graphs. A graph G is F-free if G does not contain any FF as a subgraph. The Turán number ex(n,F) is the maximum number of edges in an n-vertex F-free graph. Let Ms be the matching consisting of s independent edges. Recently, Alon and Frankl determined the exact value of ex(n,{Km,Ms+1}). Gerbner obtained several results about ex(n,{F,Ms+1}) when F satisfies certain properties. In this paper, we determine the exact value of ex(n,{K,t,Ms+1}) when s,n are large enough for every 3t. When n is large enough, we also show that ex(n,{K2,2,Ms+1})=n+(s2)s2 for s12 and ex(n,{K2,t,Ms+1})=n+(t1)(s2)s2 when t3 and s is large enough.
Turán匹配数有界的完全二部图数
设F是一个图族。如果图G不包含任何F∈F作为子图,则图G是F自由的。Turán数字ex(n,F)是一个有n顶点的无F图的最大边数。设Ms为由s条独立边组成的匹配。最近,Alon和Frankl确定了ex(n,{Km,Ms+1})的确切值。Gerbner得到了当F满足某些性质时ex(n,{F,Ms+1})的几个结果。在本文中,我们确定了当s,n足够大且每3≤r≤t时ex(n,{K,t, m +1})的精确值。当n足够大时,我们还证明了当s≥12时ex(n,{K2,2,Ms+1})=n+(s2)−≤≤2s;当t≥3且s足够大时,ex(n,{K2,t,Ms+1})=n+(t−1)(s2)−≤≤2s;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信