(P2 + P3, gem)无图形的最优着色

IF 0.7 3区 数学 Q2 MATHEMATICS
Arnab Char, T. Karthick
{"title":"(P2 + P3, gem)无图形的最优着色","authors":"Arnab Char,&nbsp;T. Karthick","doi":"10.1016/j.disc.2025.114554","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <em>G</em>, the parameters <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> respectively denote the chromatic number and the clique number of <em>G</em>. A function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>x</mi></math></span>, for all <span><math><mi>x</mi><mo>∈</mo><mi>N</mi></math></span> is called a <em>χ-binding function</em> for the given class of graphs <span><math><mi>G</mi></math></span> if every <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>, and the <em>smallest χ-binding function</em> <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for <span><math><mi>G</mi></math></span> is defined as <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mtext> and </mtext><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>}</mo></math></span>. In general, the problem of obtaining the smallest <em>χ</em>-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs, and prove that the function <span><math><mi>ϕ</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> defined by <span><math><mi>ϕ</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>4</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></mrow></math></span>, for <span><math><mi>x</mi><mo>≥</mo><mn>4</mn></math></span> is the smallest <em>χ</em>-binding function for the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs. Also we completely characterize the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs <span><math><mi>P</mi></math></span> where every <span><math><mi>G</mi><mo>∈</mo><mi>P</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114554"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal coloring of (P2 + P3, gem)-free graphs\",\"authors\":\"Arnab Char,&nbsp;T. Karthick\",\"doi\":\"10.1016/j.disc.2025.114554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a graph <em>G</em>, the parameters <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> respectively denote the chromatic number and the clique number of <em>G</em>. A function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>x</mi></math></span>, for all <span><math><mi>x</mi><mo>∈</mo><mi>N</mi></math></span> is called a <em>χ-binding function</em> for the given class of graphs <span><math><mi>G</mi></math></span> if every <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>, and the <em>smallest χ-binding function</em> <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for <span><math><mi>G</mi></math></span> is defined as <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mtext> and </mtext><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>}</mo></math></span>. In general, the problem of obtaining the smallest <em>χ</em>-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs, and prove that the function <span><math><mi>ϕ</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> defined by <span><math><mi>ϕ</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>4</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></mrow></math></span>, for <span><math><mi>x</mi><mo>≥</mo><mn>4</mn></math></span> is the smallest <em>χ</em>-binding function for the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs. Also we completely characterize the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs <span><math><mi>P</mi></math></span> where every <span><math><mi>G</mi><mo>∈</mo><mi>P</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114554\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001621\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001621","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图G,参数χ(G)和ω(G)分别表示G的色数和团数。对于所有x∈N,使f(1)=1且f(x)≥x的函数f:N→N称为给定图G类的χ-绑定函数,如果每个G∈G满足χ(G)≤f(ω(G)),则G的最小χ-绑定函数f定义为f(x):=max (χ(G)|G∈G, ω(G)=x}。一般来说,对于给定的图类,求最小的χ-binding函数似乎是一个极其困难的问题,只有少数几类图在这个方向上得到了研究。本文研究了一类(P2+P3, gem)自由图,证明了当x≥4时,由φ (1)=1, φ (2)=4, φ (3)=6, φ (x)= φ 14(5x−1)φ定义的函数φ:N→N是该类(P2+P3, gem)自由图的最小χ-绑定函数。我们还完整地刻画了一类(P2+P3, gem)自由图P,其中每个G∈P满足χ(G)=∑14(5ω(G)−1)²。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal coloring of (P2 + P3, gem)-free graphs
Given a graph G, the parameters χ(G) and ω(G) respectively denote the chromatic number and the clique number of G. A function f:NN such that f(1)=1 and f(x)x, for all xN is called a χ-binding function for the given class of graphs G if every GG satisfies χ(G)f(ω(G)), and the smallest χ-binding function f for G is defined as f(x):=max{χ(G)|GG and ω(G)=x}. In general, the problem of obtaining the smallest χ-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (P2+P3, gem)-free graphs, and prove that the function ϕ:NN defined by ϕ(1)=1, ϕ(2)=4, ϕ(3)=6 and ϕ(x)=14(5x1), for x4 is the smallest χ-binding function for the class of (P2+P3, gem)-free graphs. Also we completely characterize the class of (P2+P3, gem)-free graphs P where every GP satisfies χ(G)=14(5ω(G)1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信