{"title":"(P2 + P3, gem)无图形的最优着色","authors":"Arnab Char, T. Karthick","doi":"10.1016/j.disc.2025.114554","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <em>G</em>, the parameters <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> respectively denote the chromatic number and the clique number of <em>G</em>. A function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>x</mi></math></span>, for all <span><math><mi>x</mi><mo>∈</mo><mi>N</mi></math></span> is called a <em>χ-binding function</em> for the given class of graphs <span><math><mi>G</mi></math></span> if every <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>, and the <em>smallest χ-binding function</em> <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for <span><math><mi>G</mi></math></span> is defined as <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mtext> and </mtext><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>}</mo></math></span>. In general, the problem of obtaining the smallest <em>χ</em>-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs, and prove that the function <span><math><mi>ϕ</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> defined by <span><math><mi>ϕ</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>4</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></mrow></math></span>, for <span><math><mi>x</mi><mo>≥</mo><mn>4</mn></math></span> is the smallest <em>χ</em>-binding function for the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs. Also we completely characterize the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs <span><math><mi>P</mi></math></span> where every <span><math><mi>G</mi><mo>∈</mo><mi>P</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114554"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal coloring of (P2 + P3, gem)-free graphs\",\"authors\":\"Arnab Char, T. Karthick\",\"doi\":\"10.1016/j.disc.2025.114554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a graph <em>G</em>, the parameters <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> respectively denote the chromatic number and the clique number of <em>G</em>. A function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>x</mi></math></span>, for all <span><math><mi>x</mi><mo>∈</mo><mi>N</mi></math></span> is called a <em>χ-binding function</em> for the given class of graphs <span><math><mi>G</mi></math></span> if every <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>f</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>, and the <em>smallest χ-binding function</em> <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for <span><math><mi>G</mi></math></span> is defined as <span><math><msup><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mtext> and </mtext><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>}</mo></math></span>. In general, the problem of obtaining the smallest <em>χ</em>-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs, and prove that the function <span><math><mi>ϕ</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> defined by <span><math><mi>ϕ</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>2</mn><mo>)</mo><mo>=</mo><mn>4</mn></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mn>3</mn><mo>)</mo><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></mrow></math></span>, for <span><math><mi>x</mi><mo>≥</mo><mn>4</mn></math></span> is the smallest <em>χ</em>-binding function for the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs. Also we completely characterize the class of (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, gem)-free graphs <span><math><mi>P</mi></math></span> where every <span><math><mi>G</mi><mo>∈</mo><mi>P</mi></math></span> satisfies <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mo>⌈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>(</mo><mn>5</mn><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>⌉</mo></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114554\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001621\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001621","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Given a graph G, the parameters and respectively denote the chromatic number and the clique number of G. A function such that and , for all is called a χ-binding function for the given class of graphs if every satisfies , and the smallest χ-binding function for is defined as . In general, the problem of obtaining the smallest χ-binding function for the given class of graphs seems to be extremely hard, and only a few classes of graphs are studied in this direction. In this paper, we study the class of (, gem)-free graphs, and prove that the function defined by , , and , for is the smallest χ-binding function for the class of (, gem)-free graphs. Also we completely characterize the class of (, gem)-free graphs where every satisfies .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.