{"title":"Erdős商集问题中的群作用方法","authors":"Will Burstein","doi":"10.1016/j.disc.2025.114505","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field of <em>q</em> elements. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be the <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. Let <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>t</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></math></span>. For <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, denote the distance set by <span><math><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>⋯</mo><mo>+</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>E</mi><mo>}</mo></math></span>. Denote the Erdős quotient set by <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mo>=</mo><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>:</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div><div>The Erdős quotient set problem was introduced in <span><span>[13]</span></span> where it was shown that for even <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> such that <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≫</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. The proof of the latter result is quite sophisticated, and in <span><span>[17]</span></span> a simple proof using a group-action approach was obtained for the case of <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting, for each <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><span>[17]</span></span> showed if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, then <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>#</mi><mrow><mo>{</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>E</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>:</mo><mfrac><mrow><mo>‖</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mo>‖</mo><mi>c</mi><mo>−</mo><mi>d</mi><mo>‖</mo></mrow></mfrac><mo>=</mo><mi>r</mi><mo>}</mo></mrow><mo>≫</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>.</div><div>In this work we use group action techniques in the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and improve the results of <span><span>[17]</span></span> by removing the assumption on <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Specifically we show if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, and <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≥</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mi>q</mi></math></span>, then for each <span><math><mi>r</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> it follows that <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>2</mn><mi>q</mi></mrow></mfrac></math></span>. Finally, we improve the main result of <span><span>[2]</span></span> using the proof techniques from our quotient set results. Our novel introduction of the matrices <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>even</mtext></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>odd</mtext></mrow></msub></math></span> is the key to improving the results of <span><span>[17]</span></span>, <span><span>[2]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114505"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group action approaches in Erdős quotient set problem\",\"authors\":\"Will Burstein\",\"doi\":\"10.1016/j.disc.2025.114505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field of <em>q</em> elements. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be the <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. Let <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>t</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></math></span>. For <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, denote the distance set by <span><math><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>⋯</mo><mo>+</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>E</mi><mo>}</mo></math></span>. Denote the Erdős quotient set by <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mo>=</mo><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>:</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div><div>The Erdős quotient set problem was introduced in <span><span>[13]</span></span> where it was shown that for even <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> such that <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≫</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. The proof of the latter result is quite sophisticated, and in <span><span>[17]</span></span> a simple proof using a group-action approach was obtained for the case of <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting, for each <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><span>[17]</span></span> showed if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, then <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>#</mi><mrow><mo>{</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>E</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>:</mo><mfrac><mrow><mo>‖</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mo>‖</mo><mi>c</mi><mo>−</mo><mi>d</mi><mo>‖</mo></mrow></mfrac><mo>=</mo><mi>r</mi><mo>}</mo></mrow><mo>≫</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>.</div><div>In this work we use group action techniques in the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and improve the results of <span><span>[17]</span></span> by removing the assumption on <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Specifically we show if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, and <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≥</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mi>q</mi></math></span>, then for each <span><math><mi>r</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> it follows that <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>2</mn><mi>q</mi></mrow></mfrac></math></span>. Finally, we improve the main result of <span><span>[2]</span></span> using the proof techniques from our quotient set results. Our novel introduction of the matrices <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>even</mtext></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>odd</mtext></mrow></msub></math></span> is the key to improving the results of <span><span>[17]</span></span>, <span><span>[2]</span></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114505\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2500113X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500113X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Group action approaches in Erdős quotient set problem
Let denote the finite field of q elements. Let be the d-dimensional vector space over the field . Let . Let . For , denote the distance set by . Denote the Erdős quotient set by .
The Erdős quotient set problem was introduced in [13] where it was shown that for even , if such that , then . The proof of the latter result is quite sophisticated, and in [17] a simple proof using a group-action approach was obtained for the case of and . In the setting, for each , [17] showed if , then .
In this work we use group action techniques in the setting for and improve the results of [17] by removing the assumption on . Specifically we show if , , and , then for each it follows that . Finally, we improve the main result of [2] using the proof techniques from our quotient set results. Our novel introduction of the matrices and is the key to improving the results of [17], [2].
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.