Erdős商集问题中的群作用方法

IF 0.7 3区 数学 Q2 MATHEMATICS
Will Burstein
{"title":"Erdős商集问题中的群作用方法","authors":"Will Burstein","doi":"10.1016/j.disc.2025.114505","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field of <em>q</em> elements. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be the <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. Let <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>t</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></math></span>. For <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, denote the distance set by <span><math><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>⋯</mo><mo>+</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>E</mi><mo>}</mo></math></span>. Denote the Erdős quotient set by <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mo>=</mo><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>:</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div><div>The Erdős quotient set problem was introduced in <span><span>[13]</span></span> where it was shown that for even <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> such that <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≫</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. The proof of the latter result is quite sophisticated, and in <span><span>[17]</span></span> a simple proof using a group-action approach was obtained for the case of <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting, for each <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><span>[17]</span></span> showed if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, then <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>#</mi><mrow><mo>{</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>E</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>:</mo><mfrac><mrow><mo>‖</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mo>‖</mo><mi>c</mi><mo>−</mo><mi>d</mi><mo>‖</mo></mrow></mfrac><mo>=</mo><mi>r</mi><mo>}</mo></mrow><mo>≫</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>.</div><div>In this work we use group action techniques in the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and improve the results of <span><span>[17]</span></span> by removing the assumption on <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Specifically we show if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, and <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≥</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mi>q</mi></math></span>, then for each <span><math><mi>r</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> it follows that <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>2</mn><mi>q</mi></mrow></mfrac></math></span>. Finally, we improve the main result of <span><span>[2]</span></span> using the proof techniques from our quotient set results. Our novel introduction of the matrices <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>even</mtext></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>odd</mtext></mrow></msub></math></span> is the key to improving the results of <span><span>[17]</span></span>, <span><span>[2]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114505"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group action approaches in Erdős quotient set problem\",\"authors\":\"Will Burstein\",\"doi\":\"10.1016/j.disc.2025.114505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field of <em>q</em> elements. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be the <em>d</em>-dimensional vector space over the field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Let <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>:</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. Let <span><math><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>t</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></math></span>. For <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, denote the distance set by <span><math><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mo>‖</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>‖</mo><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mo>⋯</mo><mo>+</mo><msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>E</mi><mo>}</mo></math></span>. Denote the Erdős quotient set by <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mo>=</mo><mo>{</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>:</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div><div>The Erdős quotient set problem was introduced in <span><span>[13]</span></span> where it was shown that for even <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> such that <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≫</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>, then <span><math><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mfrac><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. The proof of the latter result is quite sophisticated, and in <span><span>[17]</span></span> a simple proof using a group-action approach was obtained for the case of <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>. In the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting, for each <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, <span><span>[17]</span></span> showed if <span><math><mi>E</mi><mo>⊂</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, then <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>:</mo><mo>=</mo><mi>#</mi><mrow><mo>{</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>E</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>:</mo><mfrac><mrow><mo>‖</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>‖</mo></mrow><mrow><mo>‖</mo><mi>c</mi><mo>−</mo><mi>d</mi><mo>‖</mo></mrow></mfrac><mo>=</mo><mi>r</mi><mo>}</mo></mrow><mo>≫</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>.</div><div>In this work we use group action techniques in the <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> setting for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and improve the results of <span><span>[17]</span></span> by removing the assumption on <span><math><mi>r</mi><mo>∈</mo><msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Specifically we show if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>q</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, and <span><math><mo>|</mo><mi>E</mi><mo>|</mo><mo>≥</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mi>q</mi></math></span>, then for each <span><math><mi>r</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> it follows that <span><math><mi>V</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>2</mn><mi>q</mi></mrow></mfrac></math></span>. Finally, we improve the main result of <span><span>[2]</span></span> using the proof techniques from our quotient set results. Our novel introduction of the matrices <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>even</mtext></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mtext>odd</mtext></mrow></msub></math></span> is the key to improving the results of <span><span>[17]</span></span>, <span><span>[2]</span></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114505\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2500113X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500113X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Fq表示q个元素的有限域。设Fqd是场Fq上的d维向量空间。让Fq⁎:= Fq∖{0}。让(Fq) 2: = {t2: t∈Fq}。对E⊂Fqd,表示设定的距离Δ(E): ={为x−y为:= (x1−y1) 2 +⋯+ (xd−码)2:x, y∈E}。表示设定的Erdő年代商Δ(E)Δ(E): ={圣:s t∈Δ(E), t≠0}= Fq。在[13]中引入了Erdős商集问题,证明了对于偶d≥2,如果E∧Fq2使得|E|²qd/2,则Δ(E)Δ(E)=Fq。后一个结果的证明是相当复杂的,并且在[17]中,对于q≡3(mod4)和d=2的情况,使用群作用方法得到了一个简单的证明。在问≡3 (mod4)设置,为每个r∈(Fq) 2,[17]显示如果E⊂Fq2, V (r): = # {(a, b, c, d)∈E4:为−b为为c−d为= r}≫| | 4 q。在这项工作中,我们在d=2的q≡3(mod4)设置中使用群作用技术,并通过去除r∈(Fq)2的假设来改进[17]的结果。具体地说,如果d=2, q≡3(mod4),且|E|≥2q,则对于每个r∈Fq,则V(r)≥|E|42q。最后,我们利用商集结果的证明技术改进了[2]的主要结果。我们新颖地引入了矩阵Aeven和Aodd,这是改进[17],[2]结果的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group action approaches in Erdős quotient set problem
Let Fq denote the finite field of q elements. Let Fqd be the d-dimensional vector space over the field Fq. Let Fq:=Fq{0}. Let (Fq)2:={t2:tFq}. For EFqd, denote the distance set by Δ(E):={xy:=(x1y1)2++(xdyd)2:x,yE}. Denote the Erdős quotient set by Δ(E)Δ(E):={st:s,tΔ(E),t0}=Fq.
The Erdős quotient set problem was introduced in [13] where it was shown that for even d2, if EFq2 such that |E|qd/2, then Δ(E)Δ(E)=Fq. The proof of the latter result is quite sophisticated, and in [17] a simple proof using a group-action approach was obtained for the case of q3(mod4) and d=2. In the q3(mod4) setting, for each r(Fq)2, [17] showed if EFq2, then V(r):=#{(a,b,c,d)E4:abcd=r}|E|4q.
In this work we use group action techniques in the q3(mod4) setting for d=2 and improve the results of [17] by removing the assumption on r(Fq)2. Specifically we show if d=2, q3(mod4), and |E|2q, then for each rFq it follows that V(r)|E|42q. Finally, we improve the main result of [2] using the proof techniques from our quotient set results. Our novel introduction of the matrices Aeven and Aodd is the key to improving the results of [17], [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信