{"title":"Affine groups as flag-transitive and point-primitive automorphism groups of symmetric designs","authors":"Seyed Hassan Alavi , Mohsen Bayat , Ashraf Daneshkhah , Alessandro Montinaro","doi":"10.1016/j.disc.2025.114555","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate symmetric designs admitting flag-transitive and point-primitive affine automorphism groups. We prove that if a flag-transitive automorphism group <em>G</em> of a symmetric <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <em>λ</em> prime is point-primitive of affine type, then <span><math><mi>G</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>:</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> and <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>16</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, or <em>G</em> is a subgroup of <span><math><mi>A</mi><mi>Γ</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> for some odd prime power <em>q</em>. In conclusion, we present a classification of flag-transitive and point-primitive symmetric designs with <em>λ</em> prime, which says that such an incidence structure is a projective space <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, it has parameter set <span><math><mo>(</mo><mn>15</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>7</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>11</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>11</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mn>16</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> or <span><math><mo>(</mo><mn>45</mn><mo>,</mo><mn>12</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, or <span><math><mi>v</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> where <em>p</em> is an odd prime and the automorphism group is a subgroup of <span><math><mi>A</mi><mi>Γ</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114555"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001633","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we investigate symmetric designs admitting flag-transitive and point-primitive affine automorphism groups. We prove that if a flag-transitive automorphism group G of a symmetric design with λ prime is point-primitive of affine type, then and , or G is a subgroup of for some odd prime power q. In conclusion, we present a classification of flag-transitive and point-primitive symmetric designs with λ prime, which says that such an incidence structure is a projective space , it has parameter set , , , , or , or where p is an odd prime and the automorphism group is a subgroup of .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.