Nice vertices in cubic graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Wuxian Chen , Fuliang Lu , Heping Zhang
{"title":"Nice vertices in cubic graphs","authors":"Wuxian Chen ,&nbsp;Fuliang Lu ,&nbsp;Heping Zhang","doi":"10.1016/j.disc.2025.114553","DOIUrl":null,"url":null,"abstract":"<div><div>A subgraph <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of a graph <em>G</em> is <em>nice</em> if <span><math><mi>G</mi><mo>−</mo><mi>V</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> has a perfect matching. Nice subgraphs play a vital role in the theory of ear decomposition and matching minors of matching covered graphs. A vertex <em>u</em> of a cubic graph is <em>nice</em> if <em>u</em> and its neighbors induce a nice subgraph. D. Král et al. (2010) <span><span>[9]</span></span> showed that each vertex of a cubic brick is nice. It is natural to ask how many nice vertices a matching covered cubic graph has. In this paper, using some basic results of matching covered graphs, we prove that if a non-bipartite cubic graph <em>G</em> is 2-connected, then <em>G</em> has at least 4 nice vertices; if <em>G</em> is 3-connected and <span><math><mi>G</mi><mo>≠</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, then <em>G</em> has at least 6 nice vertices. We also determine all the corresponding extremal graphs. For a cubic bipartite graph <em>G</em> with bipartition <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span>, a pair of vertices <span><math><mi>a</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>b</mi><mo>∈</mo><mi>B</mi></math></span> is called a <em>nice pair</em> if <em>a</em> and <em>b</em> together with their neighbors induce a nice subgraph. We show that a connected cubic bipartite graph <em>G</em> is a brace if and only if each pair of vertices in distinct color classes is a nice pair. In general, we prove that <em>G</em> has at least 9 nice pairs of vertices and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> is the only extremal graph.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114553"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500161X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A subgraph G of a graph G is nice if GV(G) has a perfect matching. Nice subgraphs play a vital role in the theory of ear decomposition and matching minors of matching covered graphs. A vertex u of a cubic graph is nice if u and its neighbors induce a nice subgraph. D. Král et al. (2010) [9] showed that each vertex of a cubic brick is nice. It is natural to ask how many nice vertices a matching covered cubic graph has. In this paper, using some basic results of matching covered graphs, we prove that if a non-bipartite cubic graph G is 2-connected, then G has at least 4 nice vertices; if G is 3-connected and GK4, then G has at least 6 nice vertices. We also determine all the corresponding extremal graphs. For a cubic bipartite graph G with bipartition (A,B), a pair of vertices aA and bB is called a nice pair if a and b together with their neighbors induce a nice subgraph. We show that a connected cubic bipartite graph G is a brace if and only if each pair of vertices in distinct color classes is a nice pair. In general, we prove that G has at least 9 nice pairs of vertices and K3,3 is the only extremal graph.
三次图中的顶点很漂亮
如果G−V(G ‘)具有完美匹配,则图G的子图G ’是好的。好的子图在匹配覆盖图的子图分解和子图匹配理论中起着至关重要的作用。如果一个三次图的顶点u和它的邻点能生成一个很好的子图,那么它就是一个很好的顶点u。D. Král等人(2010)[9]表明立方体砖的每个顶点都很好。问一个匹配的有盖三次图有多少顶点是很自然的。本文利用匹配覆盖图的一些基本结果,证明了如果非二部三次图G是2连通的,则G至少有4个好点;如果G是3连通的并且G≠K4,那么G至少有6个顶点。我们还确定了所有相应的极值图。对于具有二分(a,B)的三次二部图G,如果顶点a∈a和B∈B与它们的相邻顶点a和B产生一个好的子图,则称顶点a∈a和B∈B是一个好的对。我们证明了连通三次二部图G是一个括号当且仅当不同颜色类中的每对顶点都是一个漂亮的对。一般来说,我们证明了G至少有9对顶点K3是唯一的极值图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信