加莱猜想与奇半团的路径数

IF 0.7 3区 数学 Q2 MATHEMATICS
Yanan Chu , Genghua Fan , Chuixiang Zhou
{"title":"加莱猜想与奇半团的路径数","authors":"Yanan Chu ,&nbsp;Genghua Fan ,&nbsp;Chuixiang Zhou","doi":"10.1016/j.disc.2025.114725","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph with <em>n</em> vertices. A path decomposition of <em>G</em> is a set of edge-disjoint paths including all the edges of <em>G</em>. Let <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum number of paths in a path decomposition of <em>G</em>. Gallai's Conjecture asserts that if <em>G</em> is connected, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. The <em>E</em>-subgraph of <em>G</em> is the subgraph induced by the vertices of even degree in <em>G</em>. A well-known result of Lovász is that if the <em>E</em>-subgraph of <em>G</em> is empty or isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. In this paper, we prove that if the <em>E</em>-subgraph of <em>G</em> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with <span><math><mi>m</mi><mo>≤</mo><mn>15</mn></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, which implies, under the condition, that Gallai's Conjecture holds when <em>n</em> is odd. A simple graph <em>G</em> on <em>n</em> vertices is called a semi-clique if <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>&gt;</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. By the definition, if <em>G</em> is a semi-clique on <em>n</em> vertices, then <em>n</em> must be odd and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. As a corollary of our main result, we obtain that if <em>G</em> is a semi-clique on <em>n</em> vertices, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>7</mn></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114725"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallai's conjecture and the path number of odd semi-cliques\",\"authors\":\"Yanan Chu ,&nbsp;Genghua Fan ,&nbsp;Chuixiang Zhou\",\"doi\":\"10.1016/j.disc.2025.114725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a graph with <em>n</em> vertices. A path decomposition of <em>G</em> is a set of edge-disjoint paths including all the edges of <em>G</em>. Let <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum number of paths in a path decomposition of <em>G</em>. Gallai's Conjecture asserts that if <em>G</em> is connected, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. The <em>E</em>-subgraph of <em>G</em> is the subgraph induced by the vertices of even degree in <em>G</em>. A well-known result of Lovász is that if the <em>E</em>-subgraph of <em>G</em> is empty or isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. In this paper, we prove that if the <em>E</em>-subgraph of <em>G</em> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with <span><math><mi>m</mi><mo>≤</mo><mn>15</mn></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, which implies, under the condition, that Gallai's Conjecture holds when <em>n</em> is odd. A simple graph <em>G</em> on <em>n</em> vertices is called a semi-clique if <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>&gt;</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. By the definition, if <em>G</em> is a semi-clique on <em>n</em> vertices, then <em>n</em> must be odd and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. As a corollary of our main result, we obtain that if <em>G</em> is a semi-clique on <em>n</em> vertices, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>7</mn></mrow></mfrac></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114725\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003334\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003334","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有n个顶点的图。G的路径分解是包含G的所有边的不相交路径的集合。设p(G)表示G的路径分解中路径的最小数目。G的e -子图是由G中偶数次顶点诱导的子图。Lovász的一个众所周知的结果是,如果G的e -子图为空或与K1同构,则p(G)≤⌊n2⌋。证明了如果G的e子图与Km同构,且m≤15,则p(G)≤⌊n2⌋+1,这意味着在n为奇数的条件下,Gallai猜想成立。有n个顶点的简单图G称为半团,如果是|E(G)|>;⌊n2⌋(n−1)。的定义,如果G semi-clique n顶点,那么n必须是奇数,p (G)≥⌈n2⌉。作为我们主要结果的一个推论,我们得到如果G是n个顶点上的半团,则p(G)≤4n+67。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gallai's conjecture and the path number of odd semi-cliques
Let G be a graph with n vertices. A path decomposition of G is a set of edge-disjoint paths including all the edges of G. Let p(G) denote the minimum number of paths in a path decomposition of G. Gallai's Conjecture asserts that if G is connected, then p(G)n2. The E-subgraph of G is the subgraph induced by the vertices of even degree in G. A well-known result of Lovász is that if the E-subgraph of G is empty or isomorphic to K1, then p(G)n2. In this paper, we prove that if the E-subgraph of G is isomorphic to Km with m15, then p(G)n2+1, which implies, under the condition, that Gallai's Conjecture holds when n is odd. A simple graph G on n vertices is called a semi-clique if |E(G)|>n2(n1). By the definition, if G is a semi-clique on n vertices, then n must be odd and p(G)n2. As a corollary of our main result, we obtain that if G is a semi-clique on n vertices, then p(G)4n+67.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信