{"title":"加莱猜想与奇半团的路径数","authors":"Yanan Chu , Genghua Fan , Chuixiang Zhou","doi":"10.1016/j.disc.2025.114725","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph with <em>n</em> vertices. A path decomposition of <em>G</em> is a set of edge-disjoint paths including all the edges of <em>G</em>. Let <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum number of paths in a path decomposition of <em>G</em>. Gallai's Conjecture asserts that if <em>G</em> is connected, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. The <em>E</em>-subgraph of <em>G</em> is the subgraph induced by the vertices of even degree in <em>G</em>. A well-known result of Lovász is that if the <em>E</em>-subgraph of <em>G</em> is empty or isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. In this paper, we prove that if the <em>E</em>-subgraph of <em>G</em> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with <span><math><mi>m</mi><mo>≤</mo><mn>15</mn></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, which implies, under the condition, that Gallai's Conjecture holds when <em>n</em> is odd. A simple graph <em>G</em> on <em>n</em> vertices is called a semi-clique if <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>></mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. By the definition, if <em>G</em> is a semi-clique on <em>n</em> vertices, then <em>n</em> must be odd and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. As a corollary of our main result, we obtain that if <em>G</em> is a semi-clique on <em>n</em> vertices, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>7</mn></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114725"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallai's conjecture and the path number of odd semi-cliques\",\"authors\":\"Yanan Chu , Genghua Fan , Chuixiang Zhou\",\"doi\":\"10.1016/j.disc.2025.114725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a graph with <em>n</em> vertices. A path decomposition of <em>G</em> is a set of edge-disjoint paths including all the edges of <em>G</em>. Let <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum number of paths in a path decomposition of <em>G</em>. Gallai's Conjecture asserts that if <em>G</em> is connected, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. The <em>E</em>-subgraph of <em>G</em> is the subgraph induced by the vertices of even degree in <em>G</em>. A well-known result of Lovász is that if the <em>E</em>-subgraph of <em>G</em> is empty or isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. In this paper, we prove that if the <em>E</em>-subgraph of <em>G</em> is isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> with <span><math><mi>m</mi><mo>≤</mo><mn>15</mn></math></span>, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, which implies, under the condition, that Gallai's Conjecture holds when <em>n</em> is odd. A simple graph <em>G</em> on <em>n</em> vertices is called a semi-clique if <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>></mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. By the definition, if <em>G</em> is a semi-clique on <em>n</em> vertices, then <em>n</em> must be odd and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span>. As a corollary of our main result, we obtain that if <em>G</em> is a semi-clique on <em>n</em> vertices, then <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>4</mn><mi>n</mi><mo>+</mo><mn>6</mn></mrow><mrow><mn>7</mn></mrow></mfrac></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 2\",\"pages\":\"Article 114725\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003334\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003334","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Gallai's conjecture and the path number of odd semi-cliques
Let G be a graph with n vertices. A path decomposition of G is a set of edge-disjoint paths including all the edges of G. Let denote the minimum number of paths in a path decomposition of G. Gallai's Conjecture asserts that if G is connected, then . The E-subgraph of G is the subgraph induced by the vertices of even degree in G. A well-known result of Lovász is that if the E-subgraph of G is empty or isomorphic to , then . In this paper, we prove that if the E-subgraph of G is isomorphic to with , then , which implies, under the condition, that Gallai's Conjecture holds when n is odd. A simple graph G on n vertices is called a semi-clique if . By the definition, if G is a semi-clique on n vertices, then n must be odd and . As a corollary of our main result, we obtain that if G is a semi-clique on n vertices, then .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.