Keenan Calhoun, Yeşim Demiroğlu Karabulut, Vincent Pigno, Craig Timmons
{"title":"酉加法凯莱图的色差数和消色差数","authors":"Keenan Calhoun, Yeşim Demiroğlu Karabulut, Vincent Pigno, Craig Timmons","doi":"10.1016/j.disc.2025.114735","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a ring. The unitary addition Cayley graph of <em>R</em>, denoted <span><math><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, is the graph with vertex <em>R</em>, and two distinct vertices <em>x</em> and <em>y</em> are adjacent if and only if <span><math><mi>x</mi><mo>+</mo><mi>y</mi></math></span> is a unit. We determine a formula for the clique number and chromatic number of such graphs when <em>R</em> is a finite commutative ring with an odd number of elements. This includes the special case when <em>R</em> is <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the integers modulo <em>n</em>, where these parameters had been found under the assumption that <em>n</em> is even, or <em>n</em> is a power of an odd prime. Additionally, we study the achromatic number of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> in the case that <em>n</em> is the product of two primes. We prove that the achromatic number of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn><mi>q</mi></mrow></msub><mo>)</mo></math></span> is equal to <span><math><mfrac><mrow><mn>3</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> when <span><math><mi>q</mi><mo>></mo><mn>3</mn></math></span> is a prime. We also prove a lower bound that applies when <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>q</mi></math></span> where <em>p</em> and <em>q</em> are distinct odd primes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114735"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatic and achromatic numbers of unitary addition Cayley graphs\",\"authors\":\"Keenan Calhoun, Yeşim Demiroğlu Karabulut, Vincent Pigno, Craig Timmons\",\"doi\":\"10.1016/j.disc.2025.114735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a ring. The unitary addition Cayley graph of <em>R</em>, denoted <span><math><mi>U</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, is the graph with vertex <em>R</em>, and two distinct vertices <em>x</em> and <em>y</em> are adjacent if and only if <span><math><mi>x</mi><mo>+</mo><mi>y</mi></math></span> is a unit. We determine a formula for the clique number and chromatic number of such graphs when <em>R</em> is a finite commutative ring with an odd number of elements. This includes the special case when <em>R</em> is <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the integers modulo <em>n</em>, where these parameters had been found under the assumption that <em>n</em> is even, or <em>n</em> is a power of an odd prime. Additionally, we study the achromatic number of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> in the case that <em>n</em> is the product of two primes. We prove that the achromatic number of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn><mi>q</mi></mrow></msub><mo>)</mo></math></span> is equal to <span><math><mfrac><mrow><mn>3</mn><mi>q</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> when <span><math><mi>q</mi><mo>></mo><mn>3</mn></math></span> is a prime. We also prove a lower bound that applies when <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>q</mi></math></span> where <em>p</em> and <em>q</em> are distinct odd primes.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 1\",\"pages\":\"Article 114735\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25003437\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003437","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Chromatic and achromatic numbers of unitary addition Cayley graphs
Let R be a ring. The unitary addition Cayley graph of R, denoted , is the graph with vertex R, and two distinct vertices x and y are adjacent if and only if is a unit. We determine a formula for the clique number and chromatic number of such graphs when R is a finite commutative ring with an odd number of elements. This includes the special case when R is , the integers modulo n, where these parameters had been found under the assumption that n is even, or n is a power of an odd prime. Additionally, we study the achromatic number of in the case that n is the product of two primes. We prove that the achromatic number of is equal to when is a prime. We also prove a lower bound that applies when where p and q are distinct odd primes.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.