Complete bipartite immersion in graphs with independence number two: A simple proof

IF 0.7 3区 数学 Q2 MATHEMATICS
Rong Chen, Zijian Deng
{"title":"Complete bipartite immersion in graphs with independence number two: A simple proof","authors":"Rong Chen,&nbsp;Zijian Deng","doi":"10.1016/j.disc.2025.114737","DOIUrl":null,"url":null,"abstract":"<div><div>A conjecture akin to Hadwiger's conjecture posits that every graph <em>G</em> contains an immersion of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub></math></span>. Vergara showed that, for every <em>n</em>-vertex graph <em>G</em> with independence number two, this is equivalent to saying that <em>G</em> contains an immersion of the complete graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices. Recently, Botler et al. showed that every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>2</mn></math></span> contains every complete bipartite graph on <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> vertices as an immersion. In this paper, we give a much simpler proof of this result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114737"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25003450","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A conjecture akin to Hadwiger's conjecture posits that every graph G contains an immersion of the complete graph Kχ(G). Vergara showed that, for every n-vertex graph G with independence number two, this is equivalent to saying that G contains an immersion of the complete graph on n2 vertices. Recently, Botler et al. showed that every n-vertex graph G with α(G)=2 contains every complete bipartite graph on n2 vertices as an immersion. In this paper, we give a much simpler proof of this result.
具有独立性2的完全二部浸入图:一个简单的证明
一个类似于Hadwiger猜想的猜想假定每个图G都包含完全图Kχ(G)的浸入。Vergara证明了,对于每一个独立性为2的n顶点图G,这等价于说G包含了一个完全图在≤n2≤顶点上的浸渍。最近,Botler等人证明了每一个具有α(G)=2的n顶点图G包含了所有在≤n2²顶点上的完备二部图作为浸入。在本文中,我们给出了一个更简单的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信