On the matching problem in random hypergraphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Peter Frankl , Jiaxi Nie , Jian Wang
{"title":"On the matching problem in random hypergraphs","authors":"Peter Frankl ,&nbsp;Jiaxi Nie ,&nbsp;Jian Wang","doi":"10.1016/j.disc.2025.114839","DOIUrl":null,"url":null,"abstract":"<div><div>We study a variant of the Erdős Matching Problem in random hypergraphs. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denote the Erdős-Rényi random <em>k</em>-uniform hypergraph on <em>n</em> vertices where each possible edge is included with probability <em>p</em>. We show that when <span><math><mi>n</mi><mo>≫</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>s</mi></math></span> and <em>p</em> is not too small, with high probability, the maximum number of edges in a sub-hypergraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> with matching number <em>s</em> is obtained by the trivial sub-hypergraphs, i.e. the sub-hypergraph consisting of all edges containing at least one vertex in a fixed set of <em>s</em> vertices.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114839"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004479","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a variant of the Erdős Matching Problem in random hypergraphs. Let Kp(n,k) denote the Erdős-Rényi random k-uniform hypergraph on n vertices where each possible edge is included with probability p. We show that when nk2s and p is not too small, with high probability, the maximum number of edges in a sub-hypergraph of Kp(n,k) with matching number s is obtained by the trivial sub-hypergraphs, i.e. the sub-hypergraph consisting of all edges containing at least one vertex in a fixed set of s vertices.
随机超图中的匹配问题
研究了随机超图中Erdős匹配问题的一个变体。设Kp(n,k)表示有n个顶点的Erdős-Rényi随机k-均匀超图,其中每条可能的边以p的概率包含。我们证明了当n比k2s和p不太小时,具有匹配数s的Kp(n,k)的子超图的最大边数是由平凡子超图获得的,即由固定的s个顶点集合中包含至少一个顶点的所有边组成的子超图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信