Spectral extremal results on edge blow-up of graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Longfei Fang , Huiqiu Lin
{"title":"Spectral extremal results on edge blow-up of graphs","authors":"Longfei Fang ,&nbsp;Huiqiu Lin","doi":"10.1016/j.disc.2025.114835","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be the maximum size and the maximum spectral radius of an <em>F</em>-free graph of order <em>n</em>, respectively. The value <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> is called the spectral extremal value of <em>F</em>. Nikiforov (2009) <span><span>[24]</span></span> gave the spectral Stability Lemma, which implies that for every <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, sufficiently large <em>n</em> and a non-bipartite graph <em>H</em> with chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, the extremal graph for <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> can be obtained from the Turán graph <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by adding and deleting at most <span><math><mi>ε</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> edges. It is still a challenging problem to determine the exact spectral extremal values of many non-bipartite graphs. Given a graph <em>F</em> and an integer <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>, the edge blow-up of <em>F</em>, denoted by <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, is the graph obtained from replacing each edge in <em>F</em> by a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> where the new vertices of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> are all distinct. In this paper, we determine the exact spectral extremal values of the edge blow-up of all non-bipartite graphs and provide the asymptotic spectral extremal values of the edge blow-up of all bipartite graphs for sufficiently large <em>n</em>, which can be seen as a spectral version of the theorem on <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> given by Yuan (2022) <span><span>[34]</span></span>. As applications, on the one hand, we generalize several previous results on <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> for <em>F</em> being a matching and a star. On the other hand, we obtain the exact values of <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> for <em>F</em> being a path, a cycle, and a complete graph.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114835"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004431","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ex(n,F) and spex(n,F) be the maximum size and the maximum spectral radius of an F-free graph of order n, respectively. The value spex(n,F) is called the spectral extremal value of F. Nikiforov (2009) [24] gave the spectral Stability Lemma, which implies that for every ε>0, sufficiently large n and a non-bipartite graph H with chromatic number χ(H), the extremal graph for spex(n,H) can be obtained from the Turán graph Tχ(H)1(n) by adding and deleting at most εn2 edges. It is still a challenging problem to determine the exact spectral extremal values of many non-bipartite graphs. Given a graph F and an integer p2, the edge blow-up of F, denoted by Fp+1, is the graph obtained from replacing each edge in F by a Kp+1 where the new vertices of Kp+1 are all distinct. In this paper, we determine the exact spectral extremal values of the edge blow-up of all non-bipartite graphs and provide the asymptotic spectral extremal values of the edge blow-up of all bipartite graphs for sufficiently large n, which can be seen as a spectral version of the theorem on ex(n,Fp+1) given by Yuan (2022) [34]. As applications, on the one hand, we generalize several previous results on spex(n,Fp+1) for F being a matching and a star. On the other hand, we obtain the exact values of spex(n,Fp+1) for F being a path, a cycle, and a complete graph.
图边放大的谱极值结果
设ex(n,F)和spex(n,F)分别为n阶无F图的最大尺寸和最大谱半径。值spex(n,F)称为F的谱极值。Nikiforov(2009)[24]给出了谱稳定性引理,该引理表明,对于每一个ε>;0,足够大的n和一个色数为χ(H)的非二部图H,通过在Turán图Tχ(H)−1(n)中最多添加和删除εn2条边,可以得到spex(n,H)的极值图。确定许多非二部图的谱极值仍然是一个具有挑战性的问题。给定一个图F和一个整数p≥2,F的边膨胀,记作Fp+1,是用Kp+1替换F中的每条边得到的图,其中Kp+1的新顶点都是不同的。本文确定了所有非二部图边缘爆破的精确谱极值,并给出了n足够大时所有二部图边缘爆破的渐近谱极值,这可以看作是Yuan(2022)[34]给出的ex(n,Fp+1)定理的谱版。作为应用,一方面,我们推广了前人关于spex(n,Fp+1)中F为匹配和星形的几个结果。另一方面,我们得到了spex(n,Fp+1)在F为路径、循环和完全图时的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信