The nonrepetitive coloring of grids

IF 0.7 3区 数学 Q2 MATHEMATICS
Tianyi Tao
{"title":"The nonrepetitive coloring of grids","authors":"Tianyi Tao","doi":"10.1016/j.disc.2025.114828","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em>, a vertex coloring <em>f</em> is called nonrepetitive if for all <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> and all <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>〉</mo></math></span> (path of 2<em>k</em> vertices) in <em>G</em>, there must be some <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> such that <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>≠</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></math></span>.</div><div>We use <span><math><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to denote the minimum number of colors required for <em>G</em> to be nonrepetitively colored.</div><div>In 1906, Thue proved that <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>3</mn></math></span> for all <em>n</em>. In this paper, we focus on grids, which are the Cartesian products of paths. We prove that <span><math><mn>5</mn><mo>≤</mo><mi>π</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>□</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>12</mn></math></span> for sufficiently large <em>n</em>, where the previous best lower bound was 4 and upper bound was 16. Moreover, we also discuss nonrepetitive coloring of the Cartesian product of complete graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114828"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004364","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G, a vertex coloring f is called nonrepetitive if for all kN and all P2k=v1,,vk,vk+1,,v2k (path of 2k vertices) in G, there must be some 1ik such that f(vi)f(vk+i).
We use π(G) to denote the minimum number of colors required for G to be nonrepetitively colored.
In 1906, Thue proved that π(Pn)3 for all n. In this paper, we focus on grids, which are the Cartesian products of paths. We prove that 5π(PnPn)12 for sufficiently large n, where the previous best lower bound was 4 and upper bound was 16. Moreover, we also discuss nonrepetitive coloring of the Cartesian product of complete graphs.
网格的非重复着色
对于图G,顶点着色f称为非重复,如果对于所有k∈N且G中所有P2k= < v1,⋯,vk,vk+1,⋯,v2k > (2k个顶点的路径),必须有某个1≤i≤k,使得f(vi)≠f(vk+i)。我们用π(G)表示使G不重复上色所需的最小颜色数。1906年,Thue证明了所有n的π(Pn)≤3。在本文中,我们关注的是网格,它是路径的笛卡尔积。对于足够大的n,我们证明了5≤π(Pn□Pn)≤12,其中先前的最佳下界为4,上界为16。此外,我们还讨论了完全图笛卡尔积的非重复着色问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信