{"title":"The nonrepetitive coloring of grids","authors":"Tianyi Tao","doi":"10.1016/j.disc.2025.114828","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em>, a vertex coloring <em>f</em> is called nonrepetitive if for all <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> and all <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>=</mo><mo>〈</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>〉</mo></math></span> (path of 2<em>k</em> vertices) in <em>G</em>, there must be some <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> such that <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>≠</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>)</mo></math></span>.</div><div>We use <span><math><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to denote the minimum number of colors required for <em>G</em> to be nonrepetitively colored.</div><div>In 1906, Thue proved that <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>3</mn></math></span> for all <em>n</em>. In this paper, we focus on grids, which are the Cartesian products of paths. We prove that <span><math><mn>5</mn><mo>≤</mo><mi>π</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>□</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>12</mn></math></span> for sufficiently large <em>n</em>, where the previous best lower bound was 4 and upper bound was 16. Moreover, we also discuss nonrepetitive coloring of the Cartesian product of complete graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114828"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004364","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a graph G, a vertex coloring f is called nonrepetitive if for all and all (path of 2k vertices) in G, there must be some such that .
We use to denote the minimum number of colors required for G to be nonrepetitively colored.
In 1906, Thue proved that for all n. In this paper, we focus on grids, which are the Cartesian products of paths. We prove that for sufficiently large n, where the previous best lower bound was 4 and upper bound was 16. Moreover, we also discuss nonrepetitive coloring of the Cartesian product of complete graphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.