{"title":"随机超图中的匹配问题","authors":"Peter Frankl , Jiaxi Nie , Jian Wang","doi":"10.1016/j.disc.2025.114839","DOIUrl":null,"url":null,"abstract":"<div><div>We study a variant of the Erdős Matching Problem in random hypergraphs. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denote the Erdős-Rényi random <em>k</em>-uniform hypergraph on <em>n</em> vertices where each possible edge is included with probability <em>p</em>. We show that when <span><math><mi>n</mi><mo>≫</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>s</mi></math></span> and <em>p</em> is not too small, with high probability, the maximum number of edges in a sub-hypergraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> with matching number <em>s</em> is obtained by the trivial sub-hypergraphs, i.e. the sub-hypergraph consisting of all edges containing at least one vertex in a fixed set of <em>s</em> vertices.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114839"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the matching problem in random hypergraphs\",\"authors\":\"Peter Frankl , Jiaxi Nie , Jian Wang\",\"doi\":\"10.1016/j.disc.2025.114839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a variant of the Erdős Matching Problem in random hypergraphs. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> denote the Erdős-Rényi random <em>k</em>-uniform hypergraph on <em>n</em> vertices where each possible edge is included with probability <em>p</em>. We show that when <span><math><mi>n</mi><mo>≫</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>s</mi></math></span> and <em>p</em> is not too small, with high probability, the maximum number of edges in a sub-hypergraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> with matching number <em>s</em> is obtained by the trivial sub-hypergraphs, i.e. the sub-hypergraph consisting of all edges containing at least one vertex in a fixed set of <em>s</em> vertices.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114839\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004479\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004479","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study a variant of the Erdős Matching Problem in random hypergraphs. Let denote the Erdős-Rényi random k-uniform hypergraph on n vertices where each possible edge is included with probability p. We show that when and p is not too small, with high probability, the maximum number of edges in a sub-hypergraph of with matching number s is obtained by the trivial sub-hypergraphs, i.e. the sub-hypergraph consisting of all edges containing at least one vertex in a fixed set of s vertices.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.