超图中树杈填充增广

IF 0.7 3区 数学 Q2 MATHEMATICS
Pierre Hoppenot, Zoltán Szigeti
{"title":"超图中树杈填充增广","authors":"Pierre Hoppenot,&nbsp;Zoltán Szigeti","doi":"10.1016/j.disc.2025.114837","DOIUrl":null,"url":null,"abstract":"<div><div>We deepen the link between two classic areas of combinatorial optimization: augmentation and packing arborescences. We consider the following type of questions: What is the minimum number of arcs to be added to a digraph so that in the resulting digraph there exists some special kind of packing of arborescences? We answer this question for two problems: <em>h</em>-regular <span>M</span>-independent-rooted <span><math><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>-bounded <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of mixed hyperarborescences and <em>h</em>-regular <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span>-bordered <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of <em>k</em> hyperbranchings. We also solve the undirected counterpart of the latter, that is the augmentation problem for <em>h</em>-regular <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span>-bordered <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of <em>k</em> rooted hyperforests. Our results provide a common generalization of a great number of previous results.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114837"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On arborescence packing augmentation in hypergraphs\",\"authors\":\"Pierre Hoppenot,&nbsp;Zoltán Szigeti\",\"doi\":\"10.1016/j.disc.2025.114837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We deepen the link between two classic areas of combinatorial optimization: augmentation and packing arborescences. We consider the following type of questions: What is the minimum number of arcs to be added to a digraph so that in the resulting digraph there exists some special kind of packing of arborescences? We answer this question for two problems: <em>h</em>-regular <span>M</span>-independent-rooted <span><math><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>-bounded <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of mixed hyperarborescences and <em>h</em>-regular <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span>-bordered <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of <em>k</em> hyperbranchings. We also solve the undirected counterpart of the latter, that is the augmentation problem for <em>h</em>-regular <span><math><mo>(</mo><mi>ℓ</mi><mo>,</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span>-bordered <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-limited packing of <em>k</em> rooted hyperforests. Our results provide a common generalization of a great number of previous results.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114837\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004455\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004455","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们加深了组合优化的两个经典领域之间的联系:增强和填充树。我们考虑以下类型的问题:添加到有向图上的最小弧数是多少,使得在得到的有向图中存在某种特殊的树形排列?我们用两个问题回答了这个问题:混合超枝的h正则m独立根(f,g)有界(α,β)有限填充和k超枝的h正则(r, r′)有界(α,β)有限填充。我们还解决了后者的无向对应问题,即k根超森林的h正则(r, r′)有边(α,β)有限填充的增广问题。我们的结果提供了大量以往结果的共同概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On arborescence packing augmentation in hypergraphs
We deepen the link between two classic areas of combinatorial optimization: augmentation and packing arborescences. We consider the following type of questions: What is the minimum number of arcs to be added to a digraph so that in the resulting digraph there exists some special kind of packing of arborescences? We answer this question for two problems: h-regular M-independent-rooted (f,g)-bounded (α,β)-limited packing of mixed hyperarborescences and h-regular (,)-bordered (α,β)-limited packing of k hyperbranchings. We also solve the undirected counterpart of the latter, that is the augmentation problem for h-regular (,)-bordered (α,β)-limited packing of k rooted hyperforests. Our results provide a common generalization of a great number of previous results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信