Constant congestion linkages in polynomially strong digraphs in polynomial time

IF 0.7 3区 数学 Q2 MATHEMATICS
Raul Lopes , Ignasi Sau
{"title":"Constant congestion linkages in polynomially strong digraphs in polynomial time","authors":"Raul Lopes ,&nbsp;Ignasi Sau","doi":"10.1016/j.disc.2025.114808","DOIUrl":null,"url":null,"abstract":"<div><div>Given positive integers <em>k</em> and <em>c</em>, we say that a digraph <em>D</em> is <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span><em>-linked</em> if for every pair of ordered sets <span><math><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> of vertices of <em>D</em>, there are paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that for <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>k</mi><mo>]</mo></math></span> each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a path from <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and every vertex of <em>D</em> appears in at most <em>c</em> of those paths. A classical result by Thomassen [Combinatorica, 1991] states that, for every fixed <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, there is no integer <em>p</em> such that every <em>p</em>-strong digraph is <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-linked.</div><div>Edwards et al. [ESA, 2017] showed that every digraph <em>D</em> with directed treewidth at least some function <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> contains a large bramble of congestion 2. Then, they showed that every <span><math><mo>(</mo><mn>36</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>k</mi><mo>)</mo></math></span>-strong digraph containing a bramble of congestion 2 and size roughly <span><math><mn>188</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-linked. Since the directed treewidth of a digraph has to be at least its strong connectivity, this implies that there is a function <span><math><mi>L</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> such that every <span><math><mi>L</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-strong digraph is <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-linked. The result by Edwards et al. was improved by Campos et al. [ESA, 2023], who showed that any <em>k</em>-strong digraph containing a bramble of size at least <span><math><mn>2</mn><mi>k</mi><mo>(</mo><mi>c</mi><mo>⋅</mo><mi>k</mi><mo>−</mo><mi>c</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>+</mo><mi>c</mi><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and congestion <em>c</em> is <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span>-linked. Regarding how to find the bramble, although the given bound on <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> is very large, Masařík et al. [SIDMA, 2022] showed that directed treewidth <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>48</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>13</mn></mrow></msup><mo>⁡</mo><mi>k</mi><mo>)</mo></math></span> suffices if the congestion is relaxed to 8. In this article, we first show how to drop the dependence on <em>c</em>, for even <em>c</em>, on the size of the bramble that is needed in the work of Campos et al. [ESA, 2023]. Then, by making two local changes in the proof of Masařík et al. [SIDMA, 2022] we show how to construct in polynomial time a bramble of size <em>k</em> and congestion 8 assuming that a large obstruction to directed treewidth (namely, a path system) is given. Applying those two results, we show that there is polynomial function <span><math><mi>g</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> such that every <span><math><mi>g</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-strong digraph is <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mn>8</mn><mo>)</mo></math></span>-linked.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 2","pages":"Article 114808"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004169","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given positive integers k and c, we say that a digraph D is (k,c)-linked if for every pair of ordered sets {s1,,sk} and {t1,,tk} of vertices of D, there are paths P1,,Pk such that for i[k] each Pi is a path from si to ti and every vertex of D appears in at most c of those paths. A classical result by Thomassen [Combinatorica, 1991] states that, for every fixed k2, there is no integer p such that every p-strong digraph is (k,1)-linked.
Edwards et al. [ESA, 2017] showed that every digraph D with directed treewidth at least some function f(k) contains a large bramble of congestion 2. Then, they showed that every (36k3+2k)-strong digraph containing a bramble of congestion 2 and size roughly 188k3 is (k,2)-linked. Since the directed treewidth of a digraph has to be at least its strong connectivity, this implies that there is a function L(k) such that every L(k)-strong digraph is (k,2)-linked. The result by Edwards et al. was improved by Campos et al. [ESA, 2023], who showed that any k-strong digraph containing a bramble of size at least 2k(ckc+2)+c(k1) and congestion c is (k,c)-linked. Regarding how to find the bramble, although the given bound on f(k) is very large, Masařík et al. [SIDMA, 2022] showed that directed treewidth O(k48log13k) suffices if the congestion is relaxed to 8. In this article, we first show how to drop the dependence on c, for even c, on the size of the bramble that is needed in the work of Campos et al. [ESA, 2023]. Then, by making two local changes in the proof of Masařík et al. [SIDMA, 2022] we show how to construct in polynomial time a bramble of size k and congestion 8 assuming that a large obstruction to directed treewidth (namely, a path system) is given. Applying those two results, we show that there is polynomial function g(k) such that every g(k)-strong digraph is (k,8)-linked.
多项式时间多项式强有向图中的常拥塞连杆
给定正整数k和c,我们说有向图D是(k,c)链接的,如果对于D的顶点的每一对有序集合{s1,…,sk}和{t1,…,tk},存在路径P1,…,Pk,使得对于i∈[k],每个Pi都是从si到ti的路径,并且D的每个顶点最多出现在这些路径中的c个。Thomassen [Combinatorica, 1991]的一个经典结果表明,对于每个固定k≥2,不存在整数p使得每个p强有向图都是(k,1)链接的。Edwards等人[ESA, 2017]表明,每个有向树宽至少有某个函数f(k)的有向图D都包含大量的拥塞树丛2。然后,他们证明了每个(36k3+2k)-强的有向图包含一个拥塞荆棘2,大小大约为188k3是(k,2)-链接的。由于有向图的有向树宽度必须至少是它的强连通性,这意味着存在一个函数L(k),使得每个L(k)强有向图都是(k,2)链接的。Campos等人[ESA, 2023]改进了Edwards等人的结果,他们证明了任何k-强有向图包含大小至少为2k(c·k−c+2)+c(k−1)且拥塞c的有向图都是(k,c)链接的。关于如何寻找荆棘,虽然f(k)的给定界很大,但Masařík等人[SIDMA, 2022]表明,当拥塞放松到8时,有向树宽O(k48log13 (k))是足够的。在本文中,我们首先展示了如何在Campos等人的工作中减少对c的依赖,甚至c对荆棘大小的依赖[ESA, 2023]。然后,通过对Masařík等人的证明进行两个局部更改[SIDMA, 2022],我们展示了如何在多项式时间内构建大小为k的荆棘和拥塞8,假设有向树宽度(即路径系统)存在较大障碍。应用这两个结果,我们证明存在多项式函数g(k),使得每个g(k)强有向图都是(k,8)链接的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信