On odd and strong odd colorings of graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Jing-Ru Pang , Lian-Ying Miao , Yi-Zheng Fan
{"title":"On odd and strong odd colorings of graphs","authors":"Jing-Ru Pang ,&nbsp;Lian-Ying Miao ,&nbsp;Yi-Zheng Fan","doi":"10.1016/j.disc.2025.114683","DOIUrl":null,"url":null,"abstract":"<div><div>An odd <em>k</em>-coloring of a graph <em>G</em> is a proper <em>k</em>-coloring such that for every non-isolated vertex <em>v</em> there is a color that occurs an odd number of times in the neighborhood of <em>v</em>. A strong odd <em>k</em>-coloring of <em>G</em> is a proper <em>k</em>-coloring such that for every vertex <em>v</em> every color occurs an odd number of times or 0 times in the neighborhood of <em>v</em>, which is a strengthened version of odd coloring and also a relaxation of square coloring. The odd chromatic number (or the strong odd chromatic number) of a graph <em>G</em>, denoted by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (or <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>), is the minimum number of colors in any odd coloring (or strong odd coloring) of the graph <em>G</em>. In this paper, we prove that for any <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, there exists a <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> such that if <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>Δ</mi><mo>(</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>Δ</mi><msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, then <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mo>⌈</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⌉</mo></math></span>, where <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the chromatic number of <em>G</em>, and <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are the maximum degree and minimum degree of <em>G</em> respectively. In addition, we construct a planar graph with strong odd chromatic number 13, which answers a question asked by Caro, Petruševski, Škrekovski and Tuza in negative.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114683"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002912","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An odd k-coloring of a graph G is a proper k-coloring such that for every non-isolated vertex v there is a color that occurs an odd number of times in the neighborhood of v. A strong odd k-coloring of G is a proper k-coloring such that for every vertex v every color occurs an odd number of times or 0 times in the neighborhood of v, which is a strengthened version of odd coloring and also a relaxation of square coloring. The odd chromatic number (or the strong odd chromatic number) of a graph G, denoted by χo(G) (or χso(G)), is the minimum number of colors in any odd coloring (or strong odd coloring) of the graph G. In this paper, we prove that for any ϵ1>0 and ϵ2(0,1), there exists a Δ(ϵ1,ϵ2) such that if Δ(G)Δ(ϵ1,ϵ2) and δ(G)Δ(G)12+ϵ1, then χo(G)χ(G)+ϵ2Δ(G), where χ(G) is the chromatic number of G, and Δ(G),δ(G) are the maximum degree and minimum degree of G respectively. In addition, we construct a planar graph with strong odd chromatic number 13, which answers a question asked by Caro, Petruševski, Škrekovski and Tuza in negative.
论图的奇、强奇着色
奇数k-coloring图G是一个适当的k-coloring这样每non-isolated顶点v有颜色出现奇数次诉强大的邻居奇怪k-coloring G是一个合适的k-coloring这样的每一个顶点v颜色出现奇数倍或0 * v的社区,这是一个加强版的奇怪的着色和广场的放松的颜色。奇怪的彩色数字(或强烈的奇怪的彩色数字)的图G,用χo (G)(或χ(G)),是最低数量的颜色在任何奇怪的着色图的(或强烈的奇怪的着色)G .在这篇文章中,我们证明任何ϵ1在0和2ϵ∈(0,1),存在一个Δ(ϵ1,ϵ2),这样如果Δ(G)≥Δ(ϵ1,ϵ2)和δ(G)≥Δ(G) 12 +ϵ1,然后o (G)≤χχ(G) +⌈ϵ2Δ⌉(G),在χ(G)是彩色的G和Δ(G),δ(G)分别为最大程度和最小程度的G。此外,我们构造了一个强奇色数为13的平面图,否定地回答了Caro、Petruševski、Škrekovski和Tuza提出的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信