Endre Boros , Vladimir Gurvich , Martin Milanič , Dmitry Tikhanovsky , Yushi Uno
{"title":"Conformality of minimal transversals of maximal cliques","authors":"Endre Boros , Vladimir Gurvich , Martin Milanič , Dmitry Tikhanovsky , Yushi Uno","doi":"10.1016/j.disc.2025.114657","DOIUrl":null,"url":null,"abstract":"<div><div>Given a hypergraph <span><math><mi>H</mi></math></span>, the dual hypergraph of <span><math><mi>H</mi></math></span> is the hypergraph of all minimal transversals of <span><math><mi>H</mi></math></span>. A hypergraph is conformal if it is the family of maximal cliques of a graph. In a recent work, Boros, Gurvich, Milanič, and Uno (Journal of Graph Theory, 2025) studied conformality of dual hypergraphs and proved several results related to this property, leading in particular to a polynomial-time algorithm for recognizing graphs in which, for any fixed <em>k</em>, all minimal transversals of maximal cliques have size at most <em>k</em>. In this follow-up work, we provide a novel aspect to the study of graph clique transversals, by considering the dual conformality property from the perspective of graphs. More precisely, we study graphs for which the family of minimal transversals of maximal cliques is conformal. Such graphs are called clique dually conformal (CDC for short). It turns out that the class of CDC graphs is a rich generalization of the class of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. As our main results, we completely characterize CDC graphs within the families of triangle-free graphs and split graphs. Both characterizations lead to polynomial-time recognition algorithms. Generalizing the fact that every <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graph is CDC, we also show that the class of CDC graphs is closed under substitution, in the strong sense that substituting a graph <em>H</em> for a vertex of a graph <em>G</em> results in a CDC graph if and only if both <em>G</em> and <em>H</em> are CDC.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114657"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002651","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a hypergraph , the dual hypergraph of is the hypergraph of all minimal transversals of . A hypergraph is conformal if it is the family of maximal cliques of a graph. In a recent work, Boros, Gurvich, Milanič, and Uno (Journal of Graph Theory, 2025) studied conformality of dual hypergraphs and proved several results related to this property, leading in particular to a polynomial-time algorithm for recognizing graphs in which, for any fixed k, all minimal transversals of maximal cliques have size at most k. In this follow-up work, we provide a novel aspect to the study of graph clique transversals, by considering the dual conformality property from the perspective of graphs. More precisely, we study graphs for which the family of minimal transversals of maximal cliques is conformal. Such graphs are called clique dually conformal (CDC for short). It turns out that the class of CDC graphs is a rich generalization of the class of -free graphs. As our main results, we completely characterize CDC graphs within the families of triangle-free graphs and split graphs. Both characterizations lead to polynomial-time recognition algorithms. Generalizing the fact that every -free graph is CDC, we also show that the class of CDC graphs is closed under substitution, in the strong sense that substituting a graph H for a vertex of a graph G results in a CDC graph if and only if both G and H are CDC.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.