随机超图中紧汉密尔顿环幂的阈值

IF 0.7 3区 数学 Q2 MATHEMATICS
Yulin Chang , Jie Han , Lin Sun
{"title":"随机超图中紧汉密尔顿环幂的阈值","authors":"Yulin Chang ,&nbsp;Jie Han ,&nbsp;Lin Sun","doi":"10.1016/j.disc.2025.114599","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the occurrence of powers of tight Hamilton cycles in random hypergraphs. For every <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, we show that there exists a constant <span><math><mi>C</mi><mo>&gt;</mo><mn>0</mn></math></span> such that if <span><math><mi>p</mi><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mi>C</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup></math></span> then asymptotically almost surely the random hypergraph <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> contains the <em>k</em>th power of a tight Hamilton cycle. This improves on a result of Parczyk and Person, who proved the same result under the assumption <span><math><mi>p</mi><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></math></span> using a second moment argument.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114599"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The threshold for powers of tight Hamilton cycles in random hypergraphs\",\"authors\":\"Yulin Chang ,&nbsp;Jie Han ,&nbsp;Lin Sun\",\"doi\":\"10.1016/j.disc.2025.114599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the occurrence of powers of tight Hamilton cycles in random hypergraphs. For every <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, we show that there exists a constant <span><math><mi>C</mi><mo>&gt;</mo><mn>0</mn></math></span> such that if <span><math><mi>p</mi><mo>=</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mi>C</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup></math></span> then asymptotically almost surely the random hypergraph <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> contains the <em>k</em>th power of a tight Hamilton cycle. This improves on a result of Parczyk and Person, who proved the same result under the assumption <span><math><mi>p</mi><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></math></span> using a second moment argument.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114599\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002079\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了随机超图中紧汉密尔顿环幂的出现。对于每一个r≥3和k≥1,我们证明存在一个常数C>;0,使得当p=p(n)≥Cn−1/(k+r−2r−1),则随机超图H(r)(n,p)渐近几乎肯定包含紧汉密尔顿环的k次幂。这改进了parzyk和Person的结果,他们在p=ω(n−1/(k+r−2r−1))的假设下使用第二矩论证证明了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The threshold for powers of tight Hamilton cycles in random hypergraphs
We investigate the occurrence of powers of tight Hamilton cycles in random hypergraphs. For every r3 and k1, we show that there exists a constant C>0 such that if p=p(n)Cn1/(k+r2r1) then asymptotically almost surely the random hypergraph H(r)(n,p) contains the kth power of a tight Hamilton cycle. This improves on a result of Parczyk and Person, who proved the same result under the assumption p=ω(n1/(k+r2r1)) using a second moment argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信