Discrete Mathematics最新文献

筛选
英文 中文
The isomorphism problem of trees from the viewpoint of Terwilliger algebras with respect to an edge
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-23 DOI: 10.1016/j.disc.2025.114407
Shuang-Dong Li , Ying-Ying Tan , Jing Xu , Xiaoye Liang
{"title":"The isomorphism problem of trees from the viewpoint of Terwilliger algebras with respect to an edge","authors":"Shuang-Dong Li ,&nbsp;Ying-Ying Tan ,&nbsp;Jing Xu ,&nbsp;Xiaoye Liang","doi":"10.1016/j.disc.2025.114407","DOIUrl":"10.1016/j.disc.2025.114407","url":null,"abstract":"<div><div>Let Γ be a finite connected tree, and let <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> be an edge of Γ. Fix <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>}</mo></math></span> as the base vertex set, let <span><math><msup><mrow><mi>Γ</mi></mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></msup></math></span> be an edge rooted tree with the edge root <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Let <span><math><mi>T</mi><mo>=</mo><mi>T</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> be the Terwilliger algebra of <span><math><msup><mrow><mi>Γ</mi></mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></msup></math></span> with respect to <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. In this paper, we characterize the structure of the irreducible <em>T</em>-module with the endpoint 0. As a result, it is shown that <span><math><mi>T</mi><mo>=</mo><mi>T</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> recognizes the isomorphism class of <span><math><msup><mrow><mi>Γ</mi></mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114407"},"PeriodicalIF":0.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143290014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the oriented diameter of near planar triangulations
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-23 DOI: 10.1016/j.disc.2025.114406
Yiwei Ge , Xiaonan Liu , Zhiyu Wang
{"title":"On the oriented diameter of near planar triangulations","authors":"Yiwei Ge ,&nbsp;Xiaonan Liu ,&nbsp;Zhiyu Wang","doi":"10.1016/j.disc.2025.114406","DOIUrl":"10.1016/j.disc.2025.114406","url":null,"abstract":"<div><div>In this paper, we show that the oriented diameter of any <em>n</em>-vertex 2-connected near triangulation is at most <span><math><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> (except for seven small exceptions), and the upper bound is tight. This extends a result of Wang et al. (2021) <span><span>[29]</span></span> on the oriented diameter of maximal outerplanar graphs, and improves an upper bound of <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>+</mo><mi>O</mi><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> on the oriented diameter of planar triangulations by Mondal et al. (2024) <span><span>[24]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114406"},"PeriodicalIF":0.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143290020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three classes of propagation rules for generalized Reed-Solomon codes and their applications to EAQECCs
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-22 DOI: 10.1016/j.disc.2025.114405
Ruhao Wan, Shixin Zhu
{"title":"Three classes of propagation rules for generalized Reed-Solomon codes and their applications to EAQECCs","authors":"Ruhao Wan,&nbsp;Shixin Zhu","doi":"10.1016/j.disc.2025.114405","DOIUrl":"10.1016/j.disc.2025.114405","url":null,"abstract":"<div><div>In this paper, we study the Hermitian hulls of generalized Reed-Solomon (GRS) codes over finite fields. For a given class of GRS codes, by extending the length, increasing the dimension, and extending the length and increasing the dimension at the same time, we obtain three classes of GRS codes with Hermitian hulls of arbitrary dimensions. Furthermore, based on some known <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ary Hermitian self-orthogonal GRS codes with dimension <span><math><mi>q</mi><mo>−</mo><mn>1</mn></math></span>, we obtain several classes of <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-ary maximum distance separable (MDS) codes with Hermitian hulls of arbitrary dimensions. It is worth noting that the dimension of these MDS codes can be taken from <em>q</em> to <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, and the parameters of these MDS codes can be more flexible by propagation rules. As an application, we derive three new propagation rules for MDS entanglement-assisted quantum error correction codes (EAQECCs) constructed from GRS codes. Then, from the presently known GRS codes with Hermitian hulls, we can directly obtain many MDS EAQECCs with more flexible parameters. Finally, we present several new classes of (MDS) EAQECCs with flexible parameters, and the distance of these codes can be taken from <span><math><mi>q</mi><mo>+</mo><mn>1</mn></math></span> to <span><math><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114405"},"PeriodicalIF":0.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143290023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenvalues and toughness of regular graphs
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-21 DOI: 10.1016/j.disc.2025.114404
Yuanyuan Chen , Huiqiu Lin , Zhiwen Wang
{"title":"Eigenvalues and toughness of regular graphs","authors":"Yuanyuan Chen ,&nbsp;Huiqiu Lin ,&nbsp;Zhiwen Wang","doi":"10.1016/j.disc.2025.114404","DOIUrl":"10.1016/j.disc.2025.114404","url":null,"abstract":"<div><div>The toughness of a graph <em>G</em>, denoted by <span><math><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is defined as <span><math><mi>t</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mi>S</mi><mo>⊂</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo><mo>&gt;</mo><mn>1</mn><mo>}</mo></math></span>. The <em>bipartite toughness</em> <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a non-complete bipartite graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is defined as <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mrow><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></mfrac><mo>:</mo><mi>S</mi><mo>⊂</mo><mi>X</mi><mspace></mspace><mtext>or</mtext><mspace></mspace><mi>S</mi><mo>⊂</mo><mi>Y</mi><mo>,</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>c</mi><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo><mo>&gt;</mo><mn>1</mn><mo>}</mo></math></span>. Incorporating the toughness and eigenvalues of a graph, we provide two sufficient eigenvalue conditions for a regular graph to be <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></mfrac><mo>−</mo></math></span>tough for a positive integer <em>b</em>, which extend a significant result by Cioabă and Wong <span><span>[10]</span></span>. For a regular bipartite graph, it is proved that <span><math><mi>τ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>1</mn></math></span>. We further show a sufficient eigenvalue condition with the second largest eigenvalue for a regular bipartite graph having bipartite toughness more than 1.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114404"},"PeriodicalIF":0.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143290022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalization of the Tang-Ding binary cyclic codes
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-21 DOI: 10.1016/j.disc.2024.114390
Ling Li , Minjia Shi , Sihui Tao , Zhonghua Sun , Shixin Zhu , Jon-Lark Kim , Patrick Solé
{"title":"A generalization of the Tang-Ding binary cyclic codes","authors":"Ling Li ,&nbsp;Minjia Shi ,&nbsp;Sihui Tao ,&nbsp;Zhonghua Sun ,&nbsp;Shixin Zhu ,&nbsp;Jon-Lark Kim ,&nbsp;Patrick Solé","doi":"10.1016/j.disc.2024.114390","DOIUrl":"10.1016/j.disc.2024.114390","url":null,"abstract":"<div><div>Cyclic codes are an interesting family of linear codes since they have efficient decoding algorithms and contain optimal codes as subfamilies. Constructing infinite families of cyclic codes with good parameters is important in both theory and practice. Recently, Tang and Ding (2022) <span><span>[34]</span></span> proposed an infinite family of binary cyclic codes with good parameters. Shi et al. [<span><span>arXiv:2309.12003v1</span><svg><path></path></svg></span>, 2023] extended the binary Tang-Ding codes to the 4-ary case. Inspired by these two works, we study <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msup></math></span>-ary Tang-Ding codes, where <span><math><mi>s</mi><mo>≥</mo><mn>2</mn></math></span>. Good lower bounds on the minimum distance of the <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msup></math></span>-ary Tang-Ding codes are presented. As a by-product, an infinite family of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msup></math></span>-ary duadic codes with a square-root like lower bound is presented.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114390"},"PeriodicalIF":0.7,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143290024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulus for bases of matroids
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-16 DOI: 10.1016/j.disc.2025.114395
Huy Truong, Pietro Poggi-Corradini
{"title":"Modulus for bases of matroids","authors":"Huy Truong,&nbsp;Pietro Poggi-Corradini","doi":"10.1016/j.disc.2025.114395","DOIUrl":"10.1016/j.disc.2025.114395","url":null,"abstract":"<div><div>In this work, we explore the application of modulus in matroid theory, specifically, the modulus of the family of bases of matroids. This study not only recovers various concepts in matroid theory, including the strength, fractional arboricity, and principal partitions, but also offers new insights. In the process, we introduce the concept of a Beurling set. Additionally, our study revisits and provides an alternative approach to two of Edmonds's theorems related to the base packing and base covering problems. This is our stepping stone for establishing Fulkerson modulus duality for the family of bases. Finally, we provide a relationship between the base modulus of matroids and their dual matroids, and a complete understanding of the base <em>p</em>-modulus across all values of <em>p</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114395"},"PeriodicalIF":0.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143290196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a family of automatic apwenian sequences
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-16 DOI: 10.1016/j.disc.2025.114399
Ying-Jun Guo , Guo-Niu Han
{"title":"On a family of automatic apwenian sequences","authors":"Ying-Jun Guo ,&nbsp;Guo-Niu Han","doi":"10.1016/j.disc.2025.114399","DOIUrl":"10.1016/j.disc.2025.114399","url":null,"abstract":"<div><div>An integer sequence <span><math><msub><mrow><mo>{</mo><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span> is called <em>apwenian</em> if <span><math><mi>a</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≡</mo><mi>a</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo><mspace></mspace><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. The apwenian sequences are connected with the Hankel determinants, the continued fractions, the rational approximations and the measures of randomness for binary sequences. In this paper, we study the automatic apwenian sequences over different alphabets. On the alphabet <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>, we give an extension of the generalized Rueppel sequences and characterize all the 2-automatic apwenian sequences in this class. On the alphabet <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span>, we prove that the only apwenian sequence, among all fixed points of substitutions of constant length, is the period-doubling like sequence. On the other alphabets, we give a description of the 2-automatic apwenian sequences in terms of 2-uniform morphisms. Moreover, we find two 3-automatic apwenian sequences on the alphabet <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114399"},"PeriodicalIF":0.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143289907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotics of self-overlapping permutations
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-16 DOI: 10.1016/j.disc.2025.114400
Sergey Kirgizov , Khaydar Nurligareev
{"title":"Asymptotics of self-overlapping permutations","authors":"Sergey Kirgizov ,&nbsp;Khaydar Nurligareev","doi":"10.1016/j.disc.2025.114400","DOIUrl":"10.1016/j.disc.2025.114400","url":null,"abstract":"<div><div>In this work, we study the concept of self-overlapping permutations, which is related to the larger study of consecutive patterns in permutations. We show that this concept admits a simple and clear geometrical meaning, and prove that a permutation can be represented as a sequence of non-self-overlapping ones. The above structural decomposition allows us to obtain equations for the corresponding generating functions, as well as the complete asymptotic expansions for the probability that a large random permutation is (non-)self-overlapping. In particular, we show that almost all permutations are non-self-overlapping, and that the corresponding asymptotic expansion has the self-reference property: the involved coefficients count non-self-overlapping permutations once again. We also establish complete asymptotic expansions of the distributions of very tight non-self-overlapping patterns, and discuss the similarities of the non-self-overlapping permutations to other permutation building blocks, such as indecomposable and simple permutations, as well as their associated asymptotics.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114400"},"PeriodicalIF":0.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143289903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domination and packing in graphs
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-15 DOI: 10.1016/j.disc.2025.114393
Renzo Gómez , Juan Gutiérrez
{"title":"Domination and packing in graphs","authors":"Renzo Gómez ,&nbsp;Juan Gutiérrez","doi":"10.1016/j.disc.2025.114393","DOIUrl":"10.1016/j.disc.2025.114393","url":null,"abstract":"<div><div>Given a graph <em>G</em>, the domination number <span><math><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the minimum cardinality of a dominating set in <em>G</em>, and the packing number <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the minimum cardinality of a set of vertices whose pairwise distance is at least three. The inequality <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is well-known. Furthermore, Henning et al. conjectured that <span><math><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> if <em>G</em> is subcubic. In this paper, we show that <span><math><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>120</mn></mrow><mrow><mn>49</mn></mrow></mfrac><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> if <em>G</em> is a bipartite cubic graph. This result is obtained by showing that <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>48</mn></mrow></mfrac><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> for this class of graphs, which improves a previous bound given by Favaron. We also show that <span><math><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>3</mn><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> if <em>G</em> is a maximal outerplanar graph, and that <span><math><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> if <em>G</em> is a biconvex graph, where the latter result is tight.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114393"},"PeriodicalIF":0.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143221699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formal self-duality and numerical self-duality for symmetric association schemes
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-01-14 DOI: 10.1016/j.disc.2025.114394
Kazumasa Nomura , Paul Terwilliger
{"title":"Formal self-duality and numerical self-duality for symmetric association schemes","authors":"Kazumasa Nomura ,&nbsp;Paul Terwilliger","doi":"10.1016/j.disc.2025.114394","DOIUrl":"10.1016/j.disc.2025.114394","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; denote a symmetric association scheme. Fix an ordering &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; of the primitive idempotents of &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and let &lt;em&gt;P&lt;/em&gt; (resp. &lt;em&gt;Q&lt;/em&gt;) denote the corresponding first eigenmatrix (resp. second eigenmatrix) of &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The scheme &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is said to be formally self-dual (with respect to the ordering &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;) whenever &lt;span&gt;&lt;math&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. We define &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; to be numerically self-dual (with respect to the ordering &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;) whenever the intersection numbers and Krein parameters satisfy &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It is known that with respect to the ordering &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, formal self-duality implies numerical self-duality. This raises the following question: is it possible that with respect to the ordering &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is numerically self-dual but not formally self-dual? This is possible as we will show. We display an example of a symmetric association scheme and an ordering the primitive idempotents with respect to which the scheme is numerically self-dual but not formally self-dual. We have the following additional results about self-duality. Assume that &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;P&lt;/em&gt;-polynomial. We show that the following are equivalent: (i) &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114394"},"PeriodicalIF":0.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143221731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信