{"title":"Spectra and eigenspaces of non-normal Cayley graphs","authors":"Yang Chen, Xuanrui Hu","doi":"10.1016/j.disc.2025.114666","DOIUrl":"10.1016/j.disc.2025.114666","url":null,"abstract":"<div><div>In this paper, we construct some non-normal Cayley graphs and explicitly provide their spectra and eigenspaces using representation theory of finite groups.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114666"},"PeriodicalIF":0.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A signless Laplacian spectral Erdős-Stone-Simonovits theorem","authors":"Jian Zheng, Honghai Li, Li Su","doi":"10.1016/j.disc.2025.114665","DOIUrl":"10.1016/j.disc.2025.114665","url":null,"abstract":"<div><div>The celebrated Erdős–Stone–Simonovits theorem states that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, where <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is the chromatic number of <em>F</em>. In 2009, Nikiforov proved a spectral extension of the Erdős–Stone–Simonovits theorem in terms of the adjacency spectral radius. In this paper, we shall establish a unified extension in terms of the signless Laplacian spectral radius. Let <span><math><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the signless Laplacian spectral radius of <em>G</em> and we denote <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><mi>n</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>F</mi><mo>⊈</mo><mi>G</mi><mo>}</mo></math></span>. It is known that the Erdős–Stone–Simonovits type result for the signless Laplacian spectral radius does not hold for even cycles. We prove that if <em>F</em> is a graph with <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mn>2</mn><mi>n</mi></math></span>. This solves a problem proposed by Li, Liu and Feng (2022), which gives an entirely satisfactory answer to the problem of estimating <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Furthermore, it extends the aforementioned result of Erdős, Stone and Simonovits as well as the spectral result of Nikiforov. Our result indicates that the Erdős–Stone–Simonovits type result regarding the signless Laplacian spectral radius is valid in general.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114665"},"PeriodicalIF":0.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eccentricity and algebraic connectivity of graphs","authors":"B. Afshari , M. Afshari","doi":"10.1016/j.disc.2025.114663","DOIUrl":"10.1016/j.disc.2025.114663","url":null,"abstract":"<div><div>Let <em>G</em> be a graph on <em>n</em> nodes with algebraic connectivity <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The eccentricity of a node is defined as the length of a longest shortest path starting at that node. If <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denotes the number of nodes of eccentricity at most <em>ℓ</em>, then for <span><math><mi>ℓ</mi><mo>≥</mo><mn>2</mn></math></span>,<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mfrac><mrow><mn>4</mn><mspace></mspace><msub><mrow><mi>s</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></mrow><mrow><mo>(</mo><mi>ℓ</mi><mo>−</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></math></span></span></span> As a corollary, if <em>d</em> denotes the diameter of <em>G</em>, then<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><mspace></mspace><mi>n</mi></mrow></mfrac><mo>.</mo></math></span></span></span></div><div>It is also shown that<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mfrac><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></mrow><mrow><mn>1</mn><mo>+</mo><mi>ℓ</mi><mrow><mo>(</mo><mi>e</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>m</mi><mo>)</mo></mrow></mrow></mfrac><mo>,</mo></math></span></span></span> where <em>m</em> and <span><math><mi>e</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>)</mo></math></span> denote the number of edges in <em>G</em> and in the <em>ℓ</em>-th power of <em>G</em>, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114663"},"PeriodicalIF":0.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongjiang Wu , Yongtao Li , Lihua Feng , Jiuqiang Liu , Guihai Yu
{"title":"Maximal intersecting families revisited","authors":"Yongjiang Wu , Yongtao Li , Lihua Feng , Jiuqiang Liu , Guihai Yu","doi":"10.1016/j.disc.2025.114654","DOIUrl":"10.1016/j.disc.2025.114654","url":null,"abstract":"<div><div>The well-known Erdős–Ko–Rado theorem states that for <span><math><mi>n</mi><mo>></mo><mn>2</mn><mi>k</mi></math></span>, every intersecting family of <em>k</em>-sets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> has at most <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></math></span> sets, and the extremal family consists of all <em>k</em>-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. Let <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span> be integers. Frankl (2016) proved that if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, and <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114654"},"PeriodicalIF":0.7,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144513571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sparse graphs with an independent or foresty minimum vertex cut","authors":"Kun Cheng, Yurui Tang, Xingzhi Zhan","doi":"10.1016/j.disc.2025.114658","DOIUrl":"10.1016/j.disc.2025.114658","url":null,"abstract":"<div><div>A connected graph is called fragile if it contains an independent vertex cut. In 2002 Chen and Yu proved that every connected graph of order <em>n</em> and size at most <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn></math></span> is fragile, and in 2013 Le and Pfender characterized the non-fragile graphs of order <em>n</em> and size <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></math></span>. It is natural to consider minimum vertex cuts. We prove two results. (1) Every connected graph of order <em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and size at most <span><math><mo>⌊</mo><mn>3</mn><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> has an independent minimum vertex cut; (2) every connected graph of order <em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and size at most 2<em>n</em> has a foresty minimum vertex cut. Both results are best possible.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114658"},"PeriodicalIF":0.7,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144513676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic bounds on the numbers of vertices of polytopes of polystochastic matrices","authors":"Vladimir N. Potapov, Anna A. Taranenko","doi":"10.1016/j.disc.2025.114653","DOIUrl":"10.1016/j.disc.2025.114653","url":null,"abstract":"<div><div>A multidimensional nonnegative matrix is called polystochastic if the sum of the entries in each line is equal to 1. The set of all polystochastic matrices of order <em>n</em> and dimension <em>d</em> forms a convex polytope <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>.</div><div>In the present paper, we compare known bounds on the number of vertices of the polytope <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> and prove that the number of vertices of <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is doubly exponential in <em>d</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114653"},"PeriodicalIF":0.7,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144513570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An algebraic approach to asymptotics of the number of unlabeled bicolored graphs","authors":"Andrew Salch","doi":"10.1016/j.disc.2025.114652","DOIUrl":"10.1016/j.disc.2025.114652","url":null,"abstract":"<div><div>We define and study two structures associated to permutation groups: Dirichlet characters on permutation groups, and the “cycle form,” a bilinear form on the group algebras of permutation groups. We use Dirichlet characters and the cycle form to find a new upper bound on the number of unlabeled bicolored graphs with <em>p</em> red vertices and <em>q</em> blue vertices. We use this bound to calculate the asymptotic growth rate of the number of such graphs as <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>, answering a 1973 question of Harrison in the case where <span><math><mi>q</mi><mo>−</mo><mi>p</mi></math></span> is fixed. As an application, we show that, in an asymptotic sense, “most” elements of the power set <span><math><mi>P</mi><mo>(</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi><mo>}</mo><mo>×</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>q</mi><mo>}</mo><mo>)</mo></math></span> are in free <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>×</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-orbits.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114652"},"PeriodicalIF":0.7,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overpartition companion of Andrews and Keith's 2-colored q-series identity","authors":"Hunter Waldron","doi":"10.1016/j.disc.2025.114651","DOIUrl":"10.1016/j.disc.2025.114651","url":null,"abstract":"<div><div>Andrews and Keith recently produced a general Schmidt type partition theorem using a novel interpretation of Stockhofe's bijection, which they used to find new <em>q</em>-series identities. This includes an identity for a trivariate 2-colored partition generating function. In this paper, their Schmidt type theorem is further generalized akin to how Franklin classically extended Glaisher's theorem. As a consequence, we obtain a companion to Andrews and Keith's 2-colored identity for overpartitions. These identities appear to be special cases of a much more general result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114651"},"PeriodicalIF":0.7,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James Anderson , Herman Chau , Eun-Kyung Cho , Nicholas Crawford , Stephen G. Hartke , Emily Heath , Owen Henderschedt , Hyemin Kwon , Zhiyuan Zhang
{"title":"The forb-flex method for odd coloring and proper conflict-free coloring of planar graphs","authors":"James Anderson , Herman Chau , Eun-Kyung Cho , Nicholas Crawford , Stephen G. Hartke , Emily Heath , Owen Henderschedt , Hyemin Kwon , Zhiyuan Zhang","doi":"10.1016/j.disc.2025.114648","DOIUrl":"10.1016/j.disc.2025.114648","url":null,"abstract":"<div><div>We introduce a new technique useful for greedy coloring, which we call the forb-flex method, and apply it to odd coloring and proper conflict-free coloring of planar graphs. The odd chromatic number, denoted <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest number of colors needed to properly color <em>G</em> such that every non-isolated vertex of <em>G</em> has a color appearing an odd number of times in its neighborhood. The proper conflict-free chromatic number, denoted <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>PCF</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest number of colors needed to properly color <em>G</em> such that every non-isolated vertex of <em>G</em> has a color appearing uniquely in its neighborhood. Our new technique works by carefully counting the structures in the neighborhood of a vertex and determining if a neighbor of a vertex can be recolored at the end of a greedy coloring process to avoid conflicts. Combining this with the discharging method allows us to prove <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>PCF</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>4</mn></math></span> for planar graphs of girth at least 11, and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>4</mn></math></span> for planar graphs of girth at least 10. These results improve upon the recent works of Cho, Choi, Kwon, and Park.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114648"},"PeriodicalIF":0.7,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on the maximum size of the ground set of skew Bollobás systems","authors":"Yu Fang , Xiaomiao Wang , Tao Feng","doi":"10.1016/j.disc.2025.114650","DOIUrl":"10.1016/j.disc.2025.114650","url":null,"abstract":"<div><div>A skew Bollobás system <span><math><mi>D</mi><mo>=</mo><mo>{</mo><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></msubsup><mo>)</mo><mo>:</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi><mo>}</mo></math></span> is a collection of <em>d</em> pairwise disjoint subsets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> such that for any <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>m</mi></math></span>, there exist <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>≤</mo><mi>d</mi></math></span> with <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>∩</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msubsup><mo>≠</mo><mo>∅</mo></math></span>. Denote by <span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> the maximum size of the ground set <span><math><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup></math></span> of a skew Bollobás system <span><math><mi>D</mi></math></span> such that <span><math><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mo>|</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>m</mi><mo>]</mo></math></span> and <span><math><mi>r</mi><mo>∈</mo><mo>[</mo><mi>d</mi><mo>]</mo></math></span>. We show that for any positive integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>,<span><span><span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></munderover><munder><mo>∑","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114650"},"PeriodicalIF":0.7,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}