Discrete Mathematics最新文献

筛选
英文 中文
Spectra and eigenspaces of non-normal Cayley graphs 非正态Cayley图的谱和特征空间
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-07-01 DOI: 10.1016/j.disc.2025.114666
Yang Chen, Xuanrui Hu
{"title":"Spectra and eigenspaces of non-normal Cayley graphs","authors":"Yang Chen,&nbsp;Xuanrui Hu","doi":"10.1016/j.disc.2025.114666","DOIUrl":"10.1016/j.disc.2025.114666","url":null,"abstract":"<div><div>In this paper, we construct some non-normal Cayley graphs and explicitly provide their spectra and eigenspaces using representation theory of finite groups.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114666"},"PeriodicalIF":0.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A signless Laplacian spectral Erdős-Stone-Simonovits theorem 一个无符号拉普拉斯谱Erdős-Stone-Simonovits定理
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-07-01 DOI: 10.1016/j.disc.2025.114665
Jian Zheng, Honghai Li, Li Su
{"title":"A signless Laplacian spectral Erdős-Stone-Simonovits theorem","authors":"Jian Zheng,&nbsp;Honghai Li,&nbsp;Li Su","doi":"10.1016/j.disc.2025.114665","DOIUrl":"10.1016/j.disc.2025.114665","url":null,"abstract":"<div><div>The celebrated Erdős–Stone–Simonovits theorem states that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, where <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is the chromatic number of <em>F</em>. In 2009, Nikiforov proved a spectral extension of the Erdős–Stone–Simonovits theorem in terms of the adjacency spectral radius. In this paper, we shall establish a unified extension in terms of the signless Laplacian spectral radius. Let <span><math><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the signless Laplacian spectral radius of <em>G</em> and we denote <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><mi>n</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>F</mi><mo>⊈</mo><mi>G</mi><mo>}</mo></math></span>. It is known that the Erdős–Stone–Simonovits type result for the signless Laplacian spectral radius does not hold for even cycles. We prove that if <em>F</em> is a graph with <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mn>2</mn><mi>n</mi></math></span>. This solves a problem proposed by Li, Liu and Feng (2022), which gives an entirely satisfactory answer to the problem of estimating <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Furthermore, it extends the aforementioned result of Erdős, Stone and Simonovits as well as the spectral result of Nikiforov. Our result indicates that the Erdős–Stone–Simonovits type result regarding the signless Laplacian spectral radius is valid in general.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114665"},"PeriodicalIF":0.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eccentricity and algebraic connectivity of graphs 图的偏心性与代数连通性
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-07-01 DOI: 10.1016/j.disc.2025.114663
B. Afshari , M. Afshari
{"title":"Eccentricity and algebraic connectivity of graphs","authors":"B. Afshari ,&nbsp;M. Afshari","doi":"10.1016/j.disc.2025.114663","DOIUrl":"10.1016/j.disc.2025.114663","url":null,"abstract":"<div><div>Let <em>G</em> be a graph on <em>n</em> nodes with algebraic connectivity <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The eccentricity of a node is defined as the length of a longest shortest path starting at that node. If <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denotes the number of nodes of eccentricity at most <em>ℓ</em>, then for <span><math><mi>ℓ</mi><mo>≥</mo><mn>2</mn></math></span>,<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mfrac><mrow><mn>4</mn><mspace></mspace><msub><mrow><mi>s</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></mrow><mrow><mo>(</mo><mi>ℓ</mi><mo>−</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><mspace></mspace><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></math></span></span></span> As a corollary, if <em>d</em> denotes the diameter of <em>G</em>, then<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><mspace></mspace><mi>n</mi></mrow></mfrac><mo>.</mo></math></span></span></span></div><div>It is also shown that<span><span><span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mfrac><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></mrow><mrow><mn>1</mn><mo>+</mo><mi>ℓ</mi><mrow><mo>(</mo><mi>e</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>)</mo><mo>−</mo><mi>m</mi><mo>)</mo></mrow></mrow></mfrac><mo>,</mo></math></span></span></span> where <em>m</em> and <span><math><mi>e</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>)</mo></math></span> denote the number of edges in <em>G</em> and in the <em>ℓ</em>-th power of <em>G</em>, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114663"},"PeriodicalIF":0.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal intersecting families revisited 重新审视了最大的交叉家庭
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-30 DOI: 10.1016/j.disc.2025.114654
Yongjiang Wu , Yongtao Li , Lihua Feng , Jiuqiang Liu , Guihai Yu
{"title":"Maximal intersecting families revisited","authors":"Yongjiang Wu ,&nbsp;Yongtao Li ,&nbsp;Lihua Feng ,&nbsp;Jiuqiang Liu ,&nbsp;Guihai Yu","doi":"10.1016/j.disc.2025.114654","DOIUrl":"10.1016/j.disc.2025.114654","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The well-known Erdős–Ko–Rado theorem states that for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, every intersecting family of &lt;em&gt;k&lt;/em&gt;-sets of &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; has at most &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; sets, and the extremal family consists of all &lt;em&gt;k&lt;/em&gt;-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are called cross-intersecting if for every &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the intersection &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is non-empty. Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be integers. Frankl (2016) proved that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are cross-intersecting families, and &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is non-empty and &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-intersecting, then &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114654"},"PeriodicalIF":0.7,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144513571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse graphs with an independent or foresty minimum vertex cut 具有独立或森林最小顶点切割的稀疏图
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-30 DOI: 10.1016/j.disc.2025.114658
Kun Cheng, Yurui Tang, Xingzhi Zhan
{"title":"Sparse graphs with an independent or foresty minimum vertex cut","authors":"Kun Cheng,&nbsp;Yurui Tang,&nbsp;Xingzhi Zhan","doi":"10.1016/j.disc.2025.114658","DOIUrl":"10.1016/j.disc.2025.114658","url":null,"abstract":"<div><div>A connected graph is called fragile if it contains an independent vertex cut. In 2002 Chen and Yu proved that every connected graph of order <em>n</em> and size at most <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn></math></span> is fragile, and in 2013 Le and Pfender characterized the non-fragile graphs of order <em>n</em> and size <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></math></span>. It is natural to consider minimum vertex cuts. We prove two results. (1) Every connected graph of order <em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and size at most <span><math><mo>⌊</mo><mn>3</mn><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> has an independent minimum vertex cut; (2) every connected graph of order <em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and size at most 2<em>n</em> has a foresty minimum vertex cut. Both results are best possible.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114658"},"PeriodicalIF":0.7,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144513676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic bounds on the numbers of vertices of polytopes of polystochastic matrices 多随机矩阵多边形顶点数的渐近界
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-30 DOI: 10.1016/j.disc.2025.114653
Vladimir N. Potapov, Anna A. Taranenko
{"title":"Asymptotic bounds on the numbers of vertices of polytopes of polystochastic matrices","authors":"Vladimir N. Potapov,&nbsp;Anna A. Taranenko","doi":"10.1016/j.disc.2025.114653","DOIUrl":"10.1016/j.disc.2025.114653","url":null,"abstract":"<div><div>A multidimensional nonnegative matrix is called polystochastic if the sum of the entries in each line is equal to 1. The set of all polystochastic matrices of order <em>n</em> and dimension <em>d</em> forms a convex polytope <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>.</div><div>In the present paper, we compare known bounds on the number of vertices of the polytope <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> and prove that the number of vertices of <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is doubly exponential in <em>d</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114653"},"PeriodicalIF":0.7,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144513570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An algebraic approach to asymptotics of the number of unlabeled bicolored graphs 无标记双色图数目渐近性的代数方法
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-27 DOI: 10.1016/j.disc.2025.114652
Andrew Salch
{"title":"An algebraic approach to asymptotics of the number of unlabeled bicolored graphs","authors":"Andrew Salch","doi":"10.1016/j.disc.2025.114652","DOIUrl":"10.1016/j.disc.2025.114652","url":null,"abstract":"<div><div>We define and study two structures associated to permutation groups: Dirichlet characters on permutation groups, and the “cycle form,” a bilinear form on the group algebras of permutation groups. We use Dirichlet characters and the cycle form to find a new upper bound on the number of unlabeled bicolored graphs with <em>p</em> red vertices and <em>q</em> blue vertices. We use this bound to calculate the asymptotic growth rate of the number of such graphs as <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>, answering a 1973 question of Harrison in the case where <span><math><mi>q</mi><mo>−</mo><mi>p</mi></math></span> is fixed. As an application, we show that, in an asymptotic sense, “most” elements of the power set <span><math><mi>P</mi><mo>(</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi><mo>}</mo><mo>×</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>q</mi><mo>}</mo><mo>)</mo></math></span> are in free <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>×</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-orbits.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114652"},"PeriodicalIF":0.7,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An overpartition companion of Andrews and Keith's 2-colored q-series identity Andrews和Keith的二色q级数恒等式的一个过划分伴侣
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-26 DOI: 10.1016/j.disc.2025.114651
Hunter Waldron
{"title":"An overpartition companion of Andrews and Keith's 2-colored q-series identity","authors":"Hunter Waldron","doi":"10.1016/j.disc.2025.114651","DOIUrl":"10.1016/j.disc.2025.114651","url":null,"abstract":"<div><div>Andrews and Keith recently produced a general Schmidt type partition theorem using a novel interpretation of Stockhofe's bijection, which they used to find new <em>q</em>-series identities. This includes an identity for a trivariate 2-colored partition generating function. In this paper, their Schmidt type theorem is further generalized akin to how Franklin classically extended Glaisher's theorem. As a consequence, we obtain a companion to Andrews and Keith's 2-colored identity for overpartitions. These identities appear to be special cases of a much more general result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114651"},"PeriodicalIF":0.7,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The forb-flex method for odd coloring and proper conflict-free coloring of planar graphs 平面图形奇着色和适当无冲突着色的forb-flex方法
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-26 DOI: 10.1016/j.disc.2025.114648
James Anderson , Herman Chau , Eun-Kyung Cho , Nicholas Crawford , Stephen G. Hartke , Emily Heath , Owen Henderschedt , Hyemin Kwon , Zhiyuan Zhang
{"title":"The forb-flex method for odd coloring and proper conflict-free coloring of planar graphs","authors":"James Anderson ,&nbsp;Herman Chau ,&nbsp;Eun-Kyung Cho ,&nbsp;Nicholas Crawford ,&nbsp;Stephen G. Hartke ,&nbsp;Emily Heath ,&nbsp;Owen Henderschedt ,&nbsp;Hyemin Kwon ,&nbsp;Zhiyuan Zhang","doi":"10.1016/j.disc.2025.114648","DOIUrl":"10.1016/j.disc.2025.114648","url":null,"abstract":"<div><div>We introduce a new technique useful for greedy coloring, which we call the forb-flex method, and apply it to odd coloring and proper conflict-free coloring of planar graphs. The odd chromatic number, denoted <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest number of colors needed to properly color <em>G</em> such that every non-isolated vertex of <em>G</em> has a color appearing an odd number of times in its neighborhood. The proper conflict-free chromatic number, denoted <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>PCF</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest number of colors needed to properly color <em>G</em> such that every non-isolated vertex of <em>G</em> has a color appearing uniquely in its neighborhood. Our new technique works by carefully counting the structures in the neighborhood of a vertex and determining if a neighbor of a vertex can be recolored at the end of a greedy coloring process to avoid conflicts. Combining this with the discharging method allows us to prove <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>PCF</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>4</mn></math></span> for planar graphs of girth at least 11, and <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>4</mn></math></span> for planar graphs of girth at least 10. These results improve upon the recent works of Cho, Choi, Kwon, and Park.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114648"},"PeriodicalIF":0.7,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144492011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the maximum size of the ground set of skew Bollobás systems 关于倾斜Bollobás系统的地面集的最大尺寸的说明
IF 0.7 3区 数学
Discrete Mathematics Pub Date : 2025-06-20 DOI: 10.1016/j.disc.2025.114650
Yu Fang , Xiaomiao Wang , Tao Feng
{"title":"A note on the maximum size of the ground set of skew Bollobás systems","authors":"Yu Fang ,&nbsp;Xiaomiao Wang ,&nbsp;Tao Feng","doi":"10.1016/j.disc.2025.114650","DOIUrl":"10.1016/j.disc.2025.114650","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A skew Bollobás system &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a collection of &lt;em&gt;d&lt;/em&gt; pairwise disjoint subsets of &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; such that for any &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, there exist &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mo&gt;∅&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Denote by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;s&lt;/mtext&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; the maximum size of the ground set &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;⋃&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;⋃&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; of a skew Bollobás system &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We show that for any positive integers &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;,&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;s&lt;/mtext&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;munder&gt;&lt;mo&gt;∑","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114650"},"PeriodicalIF":0.7,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144321457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信