{"title":"一个无符号拉普拉斯谱Erdős-Stone-Simonovits定理","authors":"Jian Zheng, Honghai Li, Li Su","doi":"10.1016/j.disc.2025.114665","DOIUrl":null,"url":null,"abstract":"<div><div>The celebrated Erdős–Stone–Simonovits theorem states that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, where <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is the chromatic number of <em>F</em>. In 2009, Nikiforov proved a spectral extension of the Erdős–Stone–Simonovits theorem in terms of the adjacency spectral radius. In this paper, we shall establish a unified extension in terms of the signless Laplacian spectral radius. Let <span><math><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the signless Laplacian spectral radius of <em>G</em> and we denote <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><mi>n</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>F</mi><mo>⊈</mo><mi>G</mi><mo>}</mo></math></span>. It is known that the Erdős–Stone–Simonovits type result for the signless Laplacian spectral radius does not hold for even cycles. We prove that if <em>F</em> is a graph with <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mn>2</mn><mi>n</mi></math></span>. This solves a problem proposed by Li, Liu and Feng (2022), which gives an entirely satisfactory answer to the problem of estimating <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Furthermore, it extends the aforementioned result of Erdős, Stone and Simonovits as well as the spectral result of Nikiforov. Our result indicates that the Erdős–Stone–Simonovits type result regarding the signless Laplacian spectral radius is valid in general.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114665"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A signless Laplacian spectral Erdős-Stone-Simonovits theorem\",\"authors\":\"Jian Zheng, Honghai Li, Li Su\",\"doi\":\"10.1016/j.disc.2025.114665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The celebrated Erdős–Stone–Simonovits theorem states that <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, where <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is the chromatic number of <em>F</em>. In 2009, Nikiforov proved a spectral extension of the Erdős–Stone–Simonovits theorem in terms of the adjacency spectral radius. In this paper, we shall establish a unified extension in terms of the signless Laplacian spectral radius. Let <span><math><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the signless Laplacian spectral radius of <em>G</em> and we denote <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>q</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><mi>n</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>F</mi><mo>⊈</mo><mi>G</mi><mo>}</mo></math></span>. It is known that the Erdős–Stone–Simonovits type result for the signless Laplacian spectral radius does not hold for even cycles. We prove that if <em>F</em> is a graph with <span><math><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≥</mo><mn>3</mn></math></span>, then <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>χ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>−</mo><mn>1</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mn>2</mn><mi>n</mi></math></span>. This solves a problem proposed by Li, Liu and Feng (2022), which gives an entirely satisfactory answer to the problem of estimating <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Furthermore, it extends the aforementioned result of Erdős, Stone and Simonovits as well as the spectral result of Nikiforov. Our result indicates that the Erdős–Stone–Simonovits type result regarding the signless Laplacian spectral radius is valid in general.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 1\",\"pages\":\"Article 114665\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002730\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002730","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A signless Laplacian spectral Erdős-Stone-Simonovits theorem
The celebrated Erdős–Stone–Simonovits theorem states that , where is the chromatic number of F. In 2009, Nikiforov proved a spectral extension of the Erdős–Stone–Simonovits theorem in terms of the adjacency spectral radius. In this paper, we shall establish a unified extension in terms of the signless Laplacian spectral radius. Let be the signless Laplacian spectral radius of G and we denote . It is known that the Erdős–Stone–Simonovits type result for the signless Laplacian spectral radius does not hold for even cycles. We prove that if F is a graph with , then . This solves a problem proposed by Li, Liu and Feng (2022), which gives an entirely satisfactory answer to the problem of estimating . Furthermore, it extends the aforementioned result of Erdős, Stone and Simonovits as well as the spectral result of Nikiforov. Our result indicates that the Erdős–Stone–Simonovits type result regarding the signless Laplacian spectral radius is valid in general.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.