An overpartition companion of Andrews and Keith's 2-colored q-series identity

IF 0.7 3区 数学 Q2 MATHEMATICS
Hunter Waldron
{"title":"An overpartition companion of Andrews and Keith's 2-colored q-series identity","authors":"Hunter Waldron","doi":"10.1016/j.disc.2025.114651","DOIUrl":null,"url":null,"abstract":"<div><div>Andrews and Keith recently produced a general Schmidt type partition theorem using a novel interpretation of Stockhofe's bijection, which they used to find new <em>q</em>-series identities. This includes an identity for a trivariate 2-colored partition generating function. In this paper, their Schmidt type theorem is further generalized akin to how Franklin classically extended Glaisher's theorem. As a consequence, we obtain a companion to Andrews and Keith's 2-colored identity for overpartitions. These identities appear to be special cases of a much more general result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114651"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002596","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Andrews and Keith recently produced a general Schmidt type partition theorem using a novel interpretation of Stockhofe's bijection, which they used to find new q-series identities. This includes an identity for a trivariate 2-colored partition generating function. In this paper, their Schmidt type theorem is further generalized akin to how Franklin classically extended Glaisher's theorem. As a consequence, we obtain a companion to Andrews and Keith's 2-colored identity for overpartitions. These identities appear to be special cases of a much more general result.
Andrews和Keith的二色q级数恒等式的一个过划分伴侣
Andrews和Keith最近利用对Stockhofe双射的一种新的解释,提出了一个一般的Schmidt型划分定理,他们用它来寻找新的q级数恒等式。这包括一个三元2色分区生成函数的恒等式。本文进一步推广了他们的Schmidt型定理,类似于Franklin对Glaisher定理的经典推广。因此,我们得到了Andrews和Keith关于过度分割的二色恒等式的一个同伴。这些恒等式似乎是一个更一般结果的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信