Sparse graphs with an independent or foresty minimum vertex cut

IF 0.7 3区 数学 Q2 MATHEMATICS
Kun Cheng, Yurui Tang, Xingzhi Zhan
{"title":"Sparse graphs with an independent or foresty minimum vertex cut","authors":"Kun Cheng,&nbsp;Yurui Tang,&nbsp;Xingzhi Zhan","doi":"10.1016/j.disc.2025.114658","DOIUrl":null,"url":null,"abstract":"<div><div>A connected graph is called fragile if it contains an independent vertex cut. In 2002 Chen and Yu proved that every connected graph of order <em>n</em> and size at most <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn></math></span> is fragile, and in 2013 Le and Pfender characterized the non-fragile graphs of order <em>n</em> and size <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn></math></span>. It is natural to consider minimum vertex cuts. We prove two results. (1) Every connected graph of order <em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and size at most <span><math><mo>⌊</mo><mn>3</mn><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> has an independent minimum vertex cut; (2) every connected graph of order <em>n</em> with <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and size at most 2<em>n</em> has a foresty minimum vertex cut. Both results are best possible.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114658"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002663","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A connected graph is called fragile if it contains an independent vertex cut. In 2002 Chen and Yu proved that every connected graph of order n and size at most 2n4 is fragile, and in 2013 Le and Pfender characterized the non-fragile graphs of order n and size 2n3. It is natural to consider minimum vertex cuts. We prove two results. (1) Every connected graph of order n with n7 and size at most 3n/2 has an independent minimum vertex cut; (2) every connected graph of order n with n7 and size at most 2n has a foresty minimum vertex cut. Both results are best possible.
具有独立或森林最小顶点切割的稀疏图
如果连通图包含独立的顶点切割,则称为脆弱图。2002年Chen和Yu证明了最大2n−4的n阶连通图都是脆弱的,2013年Le和Pfender刻画了最大2n−3的n阶非脆弱图。考虑最小顶点切割是很自然的。我们证明了两个结果。(1)每一个n阶连通图,且n≥7且最大为⌊3n/2⌋,都有一个独立的最小顶点切割;(2)每一个n≥7且最大为2n的n阶连通图都有一个森林最小顶点切割。两种结果都是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信