重新审视了最大的交叉家庭

IF 0.7 3区 数学 Q2 MATHEMATICS
Yongjiang Wu , Yongtao Li , Lihua Feng , Jiuqiang Liu , Guihai Yu
{"title":"重新审视了最大的交叉家庭","authors":"Yongjiang Wu ,&nbsp;Yongtao Li ,&nbsp;Lihua Feng ,&nbsp;Jiuqiang Liu ,&nbsp;Guihai Yu","doi":"10.1016/j.disc.2025.114654","DOIUrl":null,"url":null,"abstract":"<div><div>The well-known Erdős–Ko–Rado theorem states that for <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn><mi>k</mi></math></span>, every intersecting family of <em>k</em>-sets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> has at most <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></math></span> sets, and the extremal family consists of all <em>k</em>-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. Let <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span> be integers. Frankl (2016) proved that if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, and <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the Hilton–Milner theorem, the Han–Kohayakawa theorem and the Huang–Peng theorem. Our arguments are more straightforward, and it may be of independent interest.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114654"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal intersecting families revisited\",\"authors\":\"Yongjiang Wu ,&nbsp;Yongtao Li ,&nbsp;Lihua Feng ,&nbsp;Jiuqiang Liu ,&nbsp;Guihai Yu\",\"doi\":\"10.1016/j.disc.2025.114654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The well-known Erdős–Ko–Rado theorem states that for <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn><mi>k</mi></math></span>, every intersecting family of <em>k</em>-sets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> has at most <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></math></span> sets, and the extremal family consists of all <em>k</em>-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. Let <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span> be integers. Frankl (2016) proved that if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, and <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the Hilton–Milner theorem, the Han–Kohayakawa theorem and the Huang–Peng theorem. Our arguments are more straightforward, and it may be of independent interest.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 1\",\"pages\":\"Article 114654\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002626\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002626","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知的Erdős-Ko-Rado定理指出,对于n>;2k, [n]:={1,…,n}的k个集合的每个相交族最多有(n−1k−1)个集合,极值族由包含一个固定元素(称为全星)的所有k个集合组成。Hilton-Milner定理通过确定非满星子族的均匀相交族的最大尺寸提供了一个稳定性结果。Han和Kohayakawa(2017)以及Huang和Peng(2024)进一步研究了稳定性结果。如果对于每一个F∈F和G∈G,交集F∩G是非空的,那么两个族F和G被称为交叉交集。设k≥1,t≥0,n≥2k+t为整数。Frankl(2016)证明,如果F ([n]k+t)和G ([n]k)为交叉的族,且F为非空且(t+1)相交,则|F|+|G|≤(nk)−(n−k−tk)+1。最近,Wu(2023)通过建立一个稳定性变量来强化Frankl的结果。本文的目的是双重的。受上述结果的启发,我们首先证明了一个进一步的稳定性变异体,它推广了Frankl的结果和Wu的结果。其次,作为一个有趣的应用,我们证明了上述关于相交族的结果可以用来建立Erdős-Ko-Rado定理的稳定性结果。更准确地说,我们给出了Hilton-Milner定理、Han-Kohayakawa定理和Huang-Peng定理的新的简短证明。我们的论点更直接,而且可能有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal intersecting families revisited
The well-known Erdős–Ko–Rado theorem states that for n>2k, every intersecting family of k-sets of [n]:={1,,n} has at most (n1k1) sets, and the extremal family consists of all k-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families F and G are called cross-intersecting if for every FF and GG, the intersection FG is non-empty. Let k1,t0 and n2k+t be integers. Frankl (2016) proved that if F([n]k+t) and G([n]k) are cross-intersecting families, and F is non-empty and (t+1)-intersecting, then |F|+|G|(nk)(nktk)+1. Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the Hilton–Milner theorem, the Han–Kohayakawa theorem and the Huang–Peng theorem. Our arguments are more straightforward, and it may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信