Yongjiang Wu , Yongtao Li , Lihua Feng , Jiuqiang Liu , Guihai Yu
{"title":"重新审视了最大的交叉家庭","authors":"Yongjiang Wu , Yongtao Li , Lihua Feng , Jiuqiang Liu , Guihai Yu","doi":"10.1016/j.disc.2025.114654","DOIUrl":null,"url":null,"abstract":"<div><div>The well-known Erdős–Ko–Rado theorem states that for <span><math><mi>n</mi><mo>></mo><mn>2</mn><mi>k</mi></math></span>, every intersecting family of <em>k</em>-sets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> has at most <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></math></span> sets, and the extremal family consists of all <em>k</em>-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. Let <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span> be integers. Frankl (2016) proved that if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, and <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the Hilton–Milner theorem, the Han–Kohayakawa theorem and the Huang–Peng theorem. Our arguments are more straightforward, and it may be of independent interest.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114654"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal intersecting families revisited\",\"authors\":\"Yongjiang Wu , Yongtao Li , Lihua Feng , Jiuqiang Liu , Guihai Yu\",\"doi\":\"10.1016/j.disc.2025.114654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The well-known Erdős–Ko–Rado theorem states that for <span><math><mi>n</mi><mo>></mo><mn>2</mn><mi>k</mi></math></span>, every intersecting family of <em>k</em>-sets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> has at most <span><math><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></math></span> sets, and the extremal family consists of all <em>k</em>-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. Let <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span> be integers. Frankl (2016) proved that if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, and <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the Hilton–Milner theorem, the Han–Kohayakawa theorem and the Huang–Peng theorem. Our arguments are more straightforward, and it may be of independent interest.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 1\",\"pages\":\"Article 114654\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002626\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002626","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The well-known Erdős–Ko–Rado theorem states that for , every intersecting family of k-sets of has at most sets, and the extremal family consists of all k-sets containing a fixed element (called a full star). The Hilton–Milner theorem provides a stability result by determining the maximum size of a uniform intersecting family that is not a subfamily of a full star. Further stability results were studied by Han and Kohayakawa (2017) and Huang and Peng (2024). Two families and are called cross-intersecting if for every and , the intersection is non-empty. Let and be integers. Frankl (2016) proved that if and are cross-intersecting families, and is non-empty and -intersecting, then . Recently, Wu (2023) sharpened Frankl's result by establishing a stability variant. The aim of this paper is two-fold. Inspired by the above results, we first prove a further stability variant that generalizes both Frankl's result and Wu's result. Secondly, as an interesting application, we illustrate that the aforementioned results on cross-intersecting families could be used to establish the stability results of the Erdős–Ko–Rado theorem. More precisely, we present new short proofs of the Hilton–Milner theorem, the Han–Kohayakawa theorem and the Huang–Peng theorem. Our arguments are more straightforward, and it may be of independent interest.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.