{"title":"A note on the maximum size of the ground set of skew Bollobás systems","authors":"Yu Fang , Xiaomiao Wang , Tao Feng","doi":"10.1016/j.disc.2025.114650","DOIUrl":null,"url":null,"abstract":"<div><div>A skew Bollobás system <span><math><mi>D</mi><mo>=</mo><mo>{</mo><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></msubsup><mo>)</mo><mo>:</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi><mo>}</mo></math></span> is a collection of <em>d</em> pairwise disjoint subsets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> such that for any <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>m</mi></math></span>, there exist <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>≤</mo><mi>d</mi></math></span> with <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>∩</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msubsup><mo>≠</mo><mo>∅</mo></math></span>. Denote by <span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> the maximum size of the ground set <span><math><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup></math></span> of a skew Bollobás system <span><math><mi>D</mi></math></span> such that <span><math><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mo>|</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>m</mi><mo>]</mo></math></span> and <span><math><mi>r</mi><mo>∈</mo><mo>[</mo><mi>d</mi><mo>]</mo></math></span>. We show that for any positive integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>,<span><span><span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></munderover><munder><mo>∑</mo><mrow><mover><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mo>∀</mo><mi>r</mi><mo>∈</mo><mo>[</mo><mi>d</mi><mo>]</mo></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>j</mi></mrow></mover></mrow></munder><mrow><mo>(</mo><mtable><mtr><mtd><mrow><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mi>j</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>.</mo></math></span></span></span> In particular for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, we have<span><span><span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mn>1</mn></math></span></span></span> for any non-negative integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. This corrects a typo in the upper bound on <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> given by Nagy and Patkós (2015) <span><span>[7]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114650"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002584","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A skew Bollobás system is a collection of d pairwise disjoint subsets of such that for any , there exist with . Denote by the maximum size of the ground set of a skew Bollobás system such that for and . We show that for any positive integers , In particular for , we have for any non-negative integers and . This corrects a typo in the upper bound on given by Nagy and Patkós (2015) [7].
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.