A note on the maximum size of the ground set of skew Bollobás systems

IF 0.7 3区 数学 Q2 MATHEMATICS
Yu Fang , Xiaomiao Wang , Tao Feng
{"title":"A note on the maximum size of the ground set of skew Bollobás systems","authors":"Yu Fang ,&nbsp;Xiaomiao Wang ,&nbsp;Tao Feng","doi":"10.1016/j.disc.2025.114650","DOIUrl":null,"url":null,"abstract":"<div><div>A skew Bollobás system <span><math><mi>D</mi><mo>=</mo><mo>{</mo><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></msubsup><mo>)</mo><mo>:</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi><mo>}</mo></math></span> is a collection of <em>d</em> pairwise disjoint subsets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> such that for any <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mi>j</mi><mo>≤</mo><mi>m</mi></math></span>, there exist <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mi>d</mi></math></span> with <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>∩</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msubsup><mo>≠</mo><mo>∅</mo></math></span>. Denote by <span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span> the maximum size of the ground set <span><math><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup></math></span> of a skew Bollobás system <span><math><mi>D</mi></math></span> such that <span><math><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msubsup><mo>|</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>m</mi><mo>]</mo></math></span> and <span><math><mi>r</mi><mo>∈</mo><mo>[</mo><mi>d</mi><mo>]</mo></math></span>. We show that for any positive integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>,<span><span><span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></munderover><munder><mo>∑</mo><mrow><mover><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mo>∀</mo><mi>r</mi><mo>∈</mo><mo>[</mo><mi>d</mi><mo>]</mo></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>j</mi></mrow></mover></mrow></munder><mrow><mo>(</mo><mtable><mtr><mtd><mrow><munderover><mo>∑</mo><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><mi>j</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>.</mo></math></span></span></span> In particular for <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, we have<span><span><span><math><msub><mrow><mi>n</mi></mrow><mrow><mtext>s</mtext><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mn>1</mn></math></span></span></span> for any non-negative integers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. This corrects a typo in the upper bound on <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>s</mi><mi>k</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> given by Nagy and Patkós (2015) <span><span>[7]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114650"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002584","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A skew Bollobás system D={(Ai(1),,Ai(d)):1im} is a collection of d pairwise disjoint subsets of [n] such that for any 1i<jm, there exist 1p<qd with Ai(p)Aj(q). Denote by nskew(a1,,ad) the maximum size of the ground set i=1mr=1dAi(r) of a skew Bollobás system D such that |Ai(r)|ar for i[m] and r[d]. We show that for any positive integers a1,,ad,nskew(a1,,ad)=j=1r=1dar10λrar,r[d]λ1++λd=j(r=1darja1λ1,,adλd)+1. In particular for d=2, we havenskew(a1,a2)=(a1+a2+2a1+1)(a1+a2a1)1 for any non-negative integers a1 and a2. This corrects a typo in the upper bound on nskew(a1,a2) given by Nagy and Patkós (2015) [7].
关于倾斜Bollobás系统的地面集的最大尺寸的说明
一个倾斜Bollobás系统D={(Ai(1),…,Ai(D)):1≤i≤m}是[n]的D对不相交子集的集合,使得对于任意1≤i<;j≤m,存在1≤p<;q≤D且Ai(p)∩Aj(q)≠∅。用nskew(a1,…,ad)表示一个skew Bollobás系统D的ground set的最大大小,使得对于i∈[m], r∈[D], |Ai(r)|≤ar。我们表明,任何正整数a1,…,广告,nskew (a1,…,广告)=∑j = 1∑r = 1 dar−1∑0≤λr≤ar,∀r∈[d]λ1 +⋯+λd = j(∑r = 1 dar−这里−λ1,…,广告−λd) + 1。特别是当d=2时,对于任意非负整数a1和a2,我们有(a1,a2)=(a1+a2+2a1+1) - (a1+a2a1) - 1。这纠正了Nagy和Patkós(2015)[7]给出的nskew(a1,a2)上界的一个错字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信