论图的强奇着色

IF 0.7 3区 数学 Q2 MATHEMATICS
Yair Caro , Mirko Petruševski , Riste Škrekovski , Zsolt Tuza
{"title":"论图的强奇着色","authors":"Yair Caro ,&nbsp;Mirko Petruševski ,&nbsp;Riste Škrekovski ,&nbsp;Zsolt Tuza","doi":"10.1016/j.disc.2025.114601","DOIUrl":null,"url":null,"abstract":"<div><div>A strong odd coloring of a simple graph <em>G</em> is a proper coloring of the vertices of <em>G</em> such that for every vertex <em>v</em> and every color <em>c</em>, either <em>c</em> is used an odd number of times in the open neighborhood <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo></math></span> or no neighbor of <em>v</em> is colored by <em>c</em>. The smallest integer <em>k</em> for which <em>G</em> admits a strong odd coloring with <em>k</em> colors is the strong odd chromatic number, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>so</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. These coloring notion and graph parameter were recently defined in Kwon and Park (<span><span>arXiv:2401.11653</span><svg><path></path></svg></span>). We answer a question raised by the originators concerning the existence of a constant bound for the strong odd chromatic number of all planar graphs. We also consider strong odd colorings of trees, unicyclic graphs, claw-free graphs, and graph products.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114601"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On strong odd colorings of graphs\",\"authors\":\"Yair Caro ,&nbsp;Mirko Petruševski ,&nbsp;Riste Škrekovski ,&nbsp;Zsolt Tuza\",\"doi\":\"10.1016/j.disc.2025.114601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A strong odd coloring of a simple graph <em>G</em> is a proper coloring of the vertices of <em>G</em> such that for every vertex <em>v</em> and every color <em>c</em>, either <em>c</em> is used an odd number of times in the open neighborhood <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo></math></span> or no neighbor of <em>v</em> is colored by <em>c</em>. The smallest integer <em>k</em> for which <em>G</em> admits a strong odd coloring with <em>k</em> colors is the strong odd chromatic number, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>so</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. These coloring notion and graph parameter were recently defined in Kwon and Park (<span><span>arXiv:2401.11653</span><svg><path></path></svg></span>). We answer a question raised by the originators concerning the existence of a constant bound for the strong odd chromatic number of all planar graphs. We also consider strong odd colorings of trees, unicyclic graphs, claw-free graphs, and graph products.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114601\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002092\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002092","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

简单图G的强奇着色是G的顶点的适当着色,使得对于每个顶点v和每种颜色c, c在开放邻域NG(v)中被使用奇数次,或者v的任何邻域都不被c着色。G允许有k种颜色的强奇着色的最小整数k是强奇着色数χso(G)。这些着色概念和图参数最近在Kwon和Park (arXiv:2401.11653)中被定义。我们回答了前人提出的关于所有平面图的强奇色数的常界的存在性问题。我们还考虑了树、单环图、无爪图和图积的强奇着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On strong odd colorings of graphs
A strong odd coloring of a simple graph G is a proper coloring of the vertices of G such that for every vertex v and every color c, either c is used an odd number of times in the open neighborhood NG(v) or no neighbor of v is colored by c. The smallest integer k for which G admits a strong odd coloring with k colors is the strong odd chromatic number, χso(G). These coloring notion and graph parameter were recently defined in Kwon and Park (arXiv:2401.11653). We answer a question raised by the originators concerning the existence of a constant bound for the strong odd chromatic number of all planar graphs. We also consider strong odd colorings of trees, unicyclic graphs, claw-free graphs, and graph products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信