Every subcubic graph is packing (1,1,2,2,3)-colorable

IF 0.7 3区 数学 Q2 MATHEMATICS
Xujun Liu , Xin Zhang , Yanting Zhang
{"title":"Every subcubic graph is packing (1,1,2,2,3)-colorable","authors":"Xujun Liu ,&nbsp;Xin Zhang ,&nbsp;Yanting Zhang","doi":"10.1016/j.disc.2025.114610","DOIUrl":null,"url":null,"abstract":"<div><div>For a sequence <span><math><mi>S</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> of non-decreasing integers, a packing <em>S</em>-coloring of a graph <em>G</em> is a partition of its vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that for every pair of distinct vertices <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>, the distance between <em>u</em> and <em>v</em> is at least <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn></math></span>. The packing chromatic number, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, of a graph <em>G</em> is the smallest integer <em>k</em> such that <em>G</em> has a packing <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-coloring. Gastineau and Togni asked an open question “Is it true that the 1-subdivision (<span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) of any subcubic graph <em>G</em> has packing chromatic number at most 5?” and later Brešar, Klavžar, Rall, and Wash conjectured that it is true.</div><div>In this paper, we prove that every subcubic graph has a packing <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>-coloring and it is sharp due to the existence of subcubic graphs that are not packing <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-colorable. As a corollary of our result, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mn>6</mn></math></span> for every subcubic graph <em>G</em>, improving a previous bound (8) due to Balogh, Kostochka, and Liu in 2019, and we are now just one step away from fully solving the conjecture.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114610"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002183","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a sequence S=(s1,,sk) of non-decreasing integers, a packing S-coloring of a graph G is a partition of its vertex set V(G) into V1,,Vk such that for every pair of distinct vertices u,vVi, where 1ik, the distance between u and v is at least si+1. The packing chromatic number, χp(G), of a graph G is the smallest integer k such that G has a packing (1,2,,k)-coloring. Gastineau and Togni asked an open question “Is it true that the 1-subdivision (D(G)) of any subcubic graph G has packing chromatic number at most 5?” and later Brešar, Klavžar, Rall, and Wash conjectured that it is true.
In this paper, we prove that every subcubic graph has a packing (1,1,2,2,3)-coloring and it is sharp due to the existence of subcubic graphs that are not packing (1,1,2,2)-colorable. As a corollary of our result, χp(D(G))6 for every subcubic graph G, improving a previous bound (8) due to Balogh, Kostochka, and Liu in 2019, and we are now just one step away from fully solving the conjecture.
每个次立方图都是可填充的(1,1,2,2,3)
对于非递减整数序列S=(s1,…,sk),图G的填充S着色是将其顶点集V(G)划分为V1,…,Vk,使得对于每一对不同的顶点u, V∈Vi,其中1≤i≤k, u与V之间的距离至少为si+1。图G的填充色数χp(G)是使G具有填充(1,2,…,k)着色的最小整数k。Gastineau和Togni提出了一个开放性问题:“任意次三次图G的1-细分(D(G))的填充色数不超过5,这是否正确?”后来Brešar、Klavžar、拉尔和沃什推测这是真的。本文证明了每个次立方图都有一个填充(1,1,2,2,3)着色,并且由于存在不可填充(1,1,2,2)着色的次立方图,所以它是尖锐的。作为我们的结果的推论,对于每个次立方图G, χp(D(G))≤6,改进了Balogh, Kostochka和Liu在2019年提出的先前的界(8),我们现在距离完全解决猜想只有一步之遥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信