A lower bound for the energy of graphs in terms of the vertex cover number

IF 0.7 3区 数学 Q2 MATHEMATICS
S. Akbari , S. Küçükçifçi , H. Saveh , E.Ş. Yazıcı
{"title":"A lower bound for the energy of graphs in terms of the vertex cover number","authors":"S. Akbari ,&nbsp;S. Küçükçifçi ,&nbsp;H. Saveh ,&nbsp;E.Ş. Yazıcı","doi":"10.1016/j.disc.2025.114582","DOIUrl":null,"url":null,"abstract":"<div><div>The energy of the graph <em>G</em>, denoted by <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the sum of the absolute values of its eigenvalues. Wang and Ma proved that if <em>G</em> has <em>c</em> odd cycles, then <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mo>(</mo><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>c</mi><mo>)</mo></math></span>, where <span><math><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the vertex cover number of <em>G</em>. In this paper we strengthen this result by showing that if <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> have <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> numbers of induced odd cycles, respectively, then <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mrow><mo>(</mo><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>}</mo><mo>)</mo></mrow></math></span> and we conjecture that for every graph <em>G</em>, <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We prove the conjecture for some families of graphs, namely, bipartite graphs, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free regular graphs, perfect graphs, and for all graphs with <span><math><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. It is shown that for every graph <em>G</em>, <span><math><mn>2</mn><mo>(</mo><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>)</mo><mo>≤</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is the complement of <em>G</em>, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> denote the largest and the smallest eigenvalues of the adjacency matrix of <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span>, respectively. Using this we also prove that the conjecture holds for regular graphs with large degree.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114582"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001906","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The energy of the graph G, denoted by E(G), is the sum of the absolute values of its eigenvalues. Wang and Ma proved that if G has c odd cycles, then E(G)2(β(G)c), where β(G) is the vertex cover number of G. In this paper we strengthen this result by showing that if G and G have co(G) and co(G) numbers of induced odd cycles, respectively, then E(G)2(β(G)min{co(G),co(G)}) and we conjecture that for every graph G, E(G)2β(G). We prove the conjecture for some families of graphs, namely, bipartite graphs, C4-free regular graphs, perfect graphs, and for all graphs with β(G)|V(G)|2. It is shown that for every graph G, 2(β(G)λ1(G)λn(G))E(G), where G is the complement of G, λ1(G) and λn(G) denote the largest and the smallest eigenvalues of the adjacency matrix of G, respectively. Using this we also prove that the conjecture holds for regular graphs with large degree.
用顶点覆盖数表示的图的能量的下界
图G的能量,用E(G)表示,是它的特征值的绝对值之和。Wang和Ma证明了如果G有c个奇环,那么E(G)≥2(β(G)−c),其中β(G)是G的顶点覆盖数。本文通过证明如果G和G分别有co(G)和co(G)的诱导奇环数,那么E(G)≥2(β(G)−min (co(G),co(G)})并且我们推测对于每一个图G, E(G)≥2β(G)来加强这一结果。我们证明了一些图族的猜想,即二部图、无c4正则图、完美图,以及所有β(G)≤|V(G)|2的图。证明了对于每一个图G, 2(β(G)−λ1(G)−λn(G))≤E(G),其中G是G的补,λ1(G)和λn(G)分别表示G的邻接矩阵的最大和最小特征值。由此我们也证明了该猜想对大次正则图也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信