S. Akbari , S. Küçükçifçi , H. Saveh , E.Ş. Yazıcı
{"title":"A lower bound for the energy of graphs in terms of the vertex cover number","authors":"S. Akbari , S. Küçükçifçi , H. Saveh , E.Ş. Yazıcı","doi":"10.1016/j.disc.2025.114582","DOIUrl":null,"url":null,"abstract":"<div><div>The energy of the graph <em>G</em>, denoted by <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the sum of the absolute values of its eigenvalues. Wang and Ma proved that if <em>G</em> has <em>c</em> odd cycles, then <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mo>(</mo><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>c</mi><mo>)</mo></math></span>, where <span><math><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the vertex cover number of <em>G</em>. In this paper we strengthen this result by showing that if <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> have <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> numbers of induced odd cycles, respectively, then <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mrow><mo>(</mo><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>}</mo><mo>)</mo></mrow></math></span> and we conjecture that for every graph <em>G</em>, <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We prove the conjecture for some families of graphs, namely, bipartite graphs, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free regular graphs, perfect graphs, and for all graphs with <span><math><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. It is shown that for every graph <em>G</em>, <span><math><mn>2</mn><mo>(</mo><mi>β</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo><mo>)</mo><mo>≤</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is the complement of <em>G</em>, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> denote the largest and the smallest eigenvalues of the adjacency matrix of <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span>, respectively. Using this we also prove that the conjecture holds for regular graphs with large degree.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114582"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001906","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The energy of the graph G, denoted by , is the sum of the absolute values of its eigenvalues. Wang and Ma proved that if G has c odd cycles, then , where is the vertex cover number of G. In this paper we strengthen this result by showing that if G and have and numbers of induced odd cycles, respectively, then and we conjecture that for every graph G, . We prove the conjecture for some families of graphs, namely, bipartite graphs, -free regular graphs, perfect graphs, and for all graphs with . It is shown that for every graph G, , where is the complement of G, and denote the largest and the smallest eigenvalues of the adjacency matrix of , respectively. Using this we also prove that the conjecture holds for regular graphs with large degree.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.