{"title":"Turán超图中星径森林的问题","authors":"Junpeng Zhou , Xiying Yuan","doi":"10.1016/j.disc.2025.114592","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>r</em>-uniform hypergraph (<em>r</em>-graph for short) is linear if any two edges intersect at most one vertex. Let <span><math><mi>F</mi></math></span> be a given family of <em>r</em>-graphs. An <em>r</em>-graph <em>H</em> is called <span><math><mi>F</mi></math></span>-free if <em>H</em> does not contain any member of <span><math><mi>F</mi></math></span> as a subgraph. The Turán number of <span><math><mi>F</mi></math></span> is the maximum number of edges in any <span><math><mi>F</mi></math></span>-free <em>r</em>-graph on <em>n</em> vertices, and the linear Turán number of <span><math><mi>F</mi></math></span> is defined as the Turán number of <span><math><mi>F</mi></math></span> in linear host hypergraphs. An <em>r</em>-uniform linear path <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> of length <em>ℓ</em> is an <em>r</em>-graph with edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> such that <span><math><mo>|</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span>, and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span> otherwise. Gyárfás et al. (2022) <span><span>[9]</span></span> obtained an upper bound for the linear Turán number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>. In this paper, an upper bound for the linear Turán number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is obtained, which generalizes the known result of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> to any <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. Furthermore, some results for the linear Turán number and Turán number of several linear star-path forests are obtained.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114592"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán problems for star-path forests in hypergraphs\",\"authors\":\"Junpeng Zhou , Xiying Yuan\",\"doi\":\"10.1016/j.disc.2025.114592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <em>r</em>-uniform hypergraph (<em>r</em>-graph for short) is linear if any two edges intersect at most one vertex. Let <span><math><mi>F</mi></math></span> be a given family of <em>r</em>-graphs. An <em>r</em>-graph <em>H</em> is called <span><math><mi>F</mi></math></span>-free if <em>H</em> does not contain any member of <span><math><mi>F</mi></math></span> as a subgraph. The Turán number of <span><math><mi>F</mi></math></span> is the maximum number of edges in any <span><math><mi>F</mi></math></span>-free <em>r</em>-graph on <em>n</em> vertices, and the linear Turán number of <span><math><mi>F</mi></math></span> is defined as the Turán number of <span><math><mi>F</mi></math></span> in linear host hypergraphs. An <em>r</em>-uniform linear path <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> of length <em>ℓ</em> is an <em>r</em>-graph with edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> such that <span><math><mo>|</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span>, and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∩</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span> otherwise. Gyárfás et al. (2022) <span><span>[9]</span></span> obtained an upper bound for the linear Turán number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span>. In this paper, an upper bound for the linear Turán number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is obtained, which generalizes the known result of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> to any <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. Furthermore, some results for the linear Turán number and Turán number of several linear star-path forests are obtained.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 11\",\"pages\":\"Article 114592\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002006\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
如果任意两条边最多相交于一个顶点,则r-均匀超图(简称r-图)是线性的。设F是一个给定的r-图族。如果r-图H不包含F的任何子图,则称为F-free。F的Turán个数是任意无F的r-图在n个顶点上的最大边数,F的线性Turán个数定义为线性主机超图中F的Turán个数。长度为r的r-一致线性路径P r r是一个边为e1,…,e r的r-图,使得|V(ei)∩V(ej)|=1,若|i−j|=1,若V(ei)∩V(ej)=∅,若i≠j,则V(ei)∩V(ej)=∅。Gyárfás等人(2022)[9]得到了P l3的线性Turán个数的上界。本文得到了P r的线性Turán数的一个上界,将已知的P 3的结果推广到任意P r。此外,还得到了若干线性星径林的线性Turán数和Turán数的一些结果。
Turán problems for star-path forests in hypergraphs
An r-uniform hypergraph (r-graph for short) is linear if any two edges intersect at most one vertex. Let be a given family of r-graphs. An r-graph H is called -free if H does not contain any member of as a subgraph. The Turán number of is the maximum number of edges in any -free r-graph on n vertices, and the linear Turán number of is defined as the Turán number of in linear host hypergraphs. An r-uniform linear path of length ℓ is an r-graph with edges such that if , and for otherwise. Gyárfás et al. (2022) [9] obtained an upper bound for the linear Turán number of . In this paper, an upper bound for the linear Turán number of is obtained, which generalizes the known result of to any . Furthermore, some results for the linear Turán number and Turán number of several linear star-path forests are obtained.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.